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1 Introduction

The COVID-19 pandemic unprecedentedly affected humanity, not only in terms of public health

but also economically. Unlike other crises, economic deterioration has been globally synchronised.

According to the International Monetary Fund, the world economy contracted by approximately

3.0% in 2020, with both developed and emerging economies falling by 4.8% and 1.9%, respectively.

Ensuing recovery was relatively quick owing to the distribution of vaccines and the gradual

opening during and after the lockdown. This allowed most economies to bounce back to positive

growth rates in one to three quarters, which, given the magnitude of the initial downturn, led

to a worldwide growth of 6.0% in 2021— a reflection of extreme macroeconomic data with high

levels of uncertainty. These fluctuations, quite naturally, lead economists to raise questions about

the macroeconomic effects of the COVID-19 shock, particularly on variables such as the potential

output and gap. On simple inspection, it is difficult to label a downturn of that magnitude as trivial

for long-run variables. However, the pace of the recovery also makes it challenging to label this

shock as highly influential.

With this in mind, we aim to answer whether estimations of the output gap should be adjusted

to account for the COVID-19 shock. We intend to determine a way to reconcile the magnitude of

the shock with its transitory nature when approximating the potential output.

Our approach must, therefore, cover two fronts: first, how to obtain a good econometric frame-

work for estimating the output gap, and second, how this can be adjusted in a manner that allows

incorporating the COVID-19 shock information but prevents it from influencing the model as if

it was representative of the data-generating process. For the first point, we rely on a permanent-

transitory (PT) decomposition framework to identify the fluctuations of a set of macroeconomic

variables (where the output is included) in a Bayesian Structural Vector Autoregression (BSVAR)

setup; this is done by following Uhlig (2004). Based on the resulting model, we recover a path for

the potential output that covers the COVID-19 period. For the second point, we adjust the model

estimation with a scale factor around the rare shock date along the lines of Lenza and Primiceri

(2022).

Primarily, our model includes an ample set of variables that contrasts with the usual output gap
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estimation frameworks, such as univariate statistical filters or production function approaches. This

enables us to include additional sources of information in our setup and account for the permanent

income hypothesis through the relationship between consumption and long-run output, which, as

mentioned by Cochrane (1994), facilitates identifying the permanent component of the output.

Nonetheless, the identification task in the context of SVAR models can be challenging, as these

frameworks usually rely on imposing strong assumptions about the nature of shocks that can be

too restrictive. For example, it is usual to impose that long-run output is driven only by supply

shocks, while demand is only associated with transitory components (e.g., Barsky and Sims, 2011;

Blinder and Rudd, 2013; Keating and Valcarcel, 2015; Chen and Gornicka, 2020). However, recent

data has vindicated the potential long-term role of demand-driven phenomena; for example, in the

Global Financial Crisis (GFC) and the protracted recovery that followed, a weak demand affected

both the current output and its future expectations in such a persistent way that it shifted down the

path of potential growth (Fontanari, Palumbo, and Salvatori, 2020).1 The literature has followed

suit and has recently pointed out that other shocks, such as demand (Furlanetto, Lepetit, Robstad,

Rubio-Ramírez, and Ulvedal, 2021) and monetary (Jordà, Singh, and Taylor, 2020) shocks, can also

have long-run effects.

The aforementioned consideration is even more valid in the context of the COVID-19 shock,

which was considered a supply-driven shock but eventually showed to involve demand-driven

fluctuations.2 We circumvent this issue of a separate identification of supply and demand shocks

and their association with different terms by adopting an agnostic identification approach along

the lines of Uhlig (2004), that is, based on the maximization of the explained fraction of long-

horizon Forecast Error Variance (FEV) of the gross domestic product (GDP). Such an approach

is particularly reasonable for gauging the potential output when we observe shocks such as

the COVID-19 downturn that are perceived as a combination of supply- and demand-driven

fluctuations (rather than either exclusively).

This identification scheme has been used by recent studies, such as Angeletos, Collard, and

1This experience even led to revisiting the literature on hysteresis, such as Cerra, Fatás, and Saxena (forthcoming),
Benati and Lubik (2021) and Aikman, Drehmann, Juselius, and Xing (2022).

2See Guerrieri, Lorenzoni, Straub, and Werning (2022) and Fornaro and Wolf (2020) for further discussion on demand
to output spillovers and stagnation traps.
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Dellas (2020) and Brignone and Mazzali (2022) and with the same objective of decomposing the

permanent and transitory fluctuations of macroeconomic variables. We follow a similar approach

while adjusting the econometric modelling along the lines of Lenza and Primiceri (2022), which

allows us to incorporate the COVID-19 downturn in the sample but limits the impact of the rare

event on the estimated parameters. The joint application of the identification setup and adjustment

for high-magnitude shocks in the context of output gap estimations represents our contribution.

We apply our approach to the seven developed economies and find that a single structural shock

is sufficient to characterise the long-run behaviour of GDP. By contrast, the remaining shocks tend

to explain their transitory effects more significantly. This result aligns with the findings of Dieppe,

Francis, and Kindberg-Hanlon (2021), Angeletos, Collard, and Dellas (2020) and Brignone and

Mazzali (2022) for the US and European countries. Based on this result and the structural shocks,

we approximate the GDP gap at each date as the weighted sum of the transitory shocks (and

use the other shock to recover potential output) with weights based on the associated historical

decomposition of the BSVAR model.

We address our main research question and compare the potential output (and gap) estimates

with standard gap estimation methods and the BSVAR counterpart with no COVID-19 adjustment.

We find that our proposal (PT identification with COVID-19 adjustment) prevents the potential

output from falling too rapidly at the onset of the shock and does not induce a fast recovery in

subsequent periods, a known drawback of usual univariate filtering techniques, that can also be

present in other output gap methods, and leads to reliability and stability issues in the final estimates

(see for example Chalmovianský and Němec, 2022; Marcellino and Musso, 2011; Camba-Mendez

and Rodriguez-Palenzuela, 2003).

Then, we compare our method with an alternative BSVAR with the same identification scheme

but a stochastic volatility setup. This alternative is, in principle, also adjusting for the effect of the

COVID-19 episode on the model. However, in contrast to our scaling method around the shock

date, the adjustment is entirely endogenous because the variance is time-varying. This model

leads to a stronger decrease in the potential output, but even by 2022 shows no sign of recovery,

suggesting that the large magnitude of the shock could persistently affect the estimates. In light of

this, our model represents a more appropriate alternative for a shock of large magnitude but small
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persistence that is less representative of the data-generating process of the sample.

Finally, we evaluate our method in a simulation setting to compare it with alternative setups in a

more general light —instead of only with the specific COVID-19 episode as a reference. The results

indicate that the large-scale shock may induce standard filters to deliver negatively correlated

estimators with the target (simulated "true" output gap). When that occurs, our model’s structurally

identified permanent component corrects the issue by itself, that is, without any large-shock

adjustment. However, only through the scale factor adjustment we can obtain sizable gains in

terms of the cross-correlations (with the estimand), which at their peak can grow from less than 0.5

(with unadjusted methods) to beyond 0.8.

In summary, these results and exercises consistently indicate that the model’s performance is not

only associated with the structural identification of the BSVAR but also with the adjustment of the

model to include the large shock. The benefits of adjusting the gap estimates in the presence of

shocks of unprecedented magnitude are non-trivial. The performance gains terms are present even

in models that are already successful at approximating the potential output. In addition, our setup

prevents a substantial decrease in the potential output after the outlying downturn and a quick

recovery once its transitory nature is made evident; that is, it improves on the known drawbacks of

complex counterparts and standard filters.

Related literature Our paper is related to various strands of the literature. At large, this paper

belongs to the literature on the estimation of the output gap, and to a greater extent to those based on

multivariate approaches.3 More specifically, our paper is related to studies using PT decomposition-

type methods for estimating the output gap; among these papers, Angeletos, Collard, and Dellas

(2020), Brignone and Mazzali (2022) and Dieppe, Francis, and Kindberg-Hanlon (2021) use the same

approach of this paper, that is, based on explaining the highest possible share of the FEV of the

output in the long-run. In contrast, studies such as Morley, Rodríguez-Palenzuela, Sun, and Wong

(2023), Berger, Morley, and Wong (2023), and Berger and Ochsner (2022) use a Beveridge-Nelson

(BN) type of decomposition based on the optimal forecast at long horizons. Our contribution

relative to the first group of these studies is adjusting our baseline model along the lines of Lenza

3For an overview of this literature see Álvarez and Gómez-Loscos (2018), Guisinger et al. (2018). For a discussion
about multivariate approaches, see Cochrane (1990).
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and Primiceri (2022) to include the COVID-19 period in the sample. Simultaneously, relative to the

second group, rather than calling the optimal long-run forecast (obtained via BN decomposition)

the potential GDP, we structurally identify a model where a limited number of shocks explains the

share of the long-run variance.

This study also relates to the literature on the adjustment of econometric models to include

COVID-19 periods. In particular, it closely follows the work of Lenza and Primiceri (2022) by

scaling the model information around a researcher-specified date but allowing the scale factor

parameters to be obtained in a Bayesian setting. Other studies proposing alternative adjustments

in this direction are Hartwig (2022), Carriero, Clark, Marcellino, and Mertens (2022), and Ng (2021).

Having said this, it should be mentioned that this is not the only study leveraging in Lenza

and Primiceri (2022) to adjust an output gap estimation method. This is also done in Morley,

Rodríguez-Palenzuela, Sun, and Wong (2023). There, the authors adjust a VAR-X by the COVID-19

episode and afterward estimate the trend component of the output for the Eurozone using a BN

decomposition. Our work is similar in applying jointly Lenza and Primiceri (2022) and an output

gap estimation method. However, we differ in a number of relevant dimensions. First, we use an

SVAR approach where we identify the structural errors driving the long-run component of GDP

(from the forecast-error variance decomposition as in Uhlig, 2004); second, we estimate jointly the

model and the scaling factors of Lenza and Primiceri (2022) in a Bayesian setting; and finally, we

use a different notion of the potential output (and gap): We construct the potential output (gap) as

the permanent (transitory) component resulting from the contribution of the structural shocks that

explain the long-run (short-run) behavior of the GDP.

The remainder of this document is organised as follows. We explain the methodology and data

sources in Section 2. Section 3 describes the main results, including a comparison of the proposed

framework with those yielded by other methods. In Section 4, we evaluate the performance of the

proposed method in a simulation exercise, and we conclude in Section 5.
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2 Methodology

Our framework employs a two-stage empirical strategy. First, we fit a standard Vector Autore-

gressive (VAR) model, where a scale factor adjustment around the COVID-19 episode is applied

along the lines of Lenza and Primiceri (2022). This modification is key and allows us to account

for the heightened volatility in economic data triggered by the pandemic. The first step yields a

pandemic-adjusted reduced form VAR model. In the second stage, we take the reduced form model

and recast it into a Structural Vector Autoregressive (SVAR) model. The specific identification

approach chosen for this follows Uhlig (2004) and consists of determining the set of structural

shocks that best explain the long-term dynamics of output.4

Expanding on the first stage, the scale factor included in the model is denoted as st. This variable

will factor out the residuals of the model. To be clear, st will be one during normal times. However,

in periods of increased uncertainty, such as the pandemic, it will be allowed to take on different

values. Such values are determined endogenously by the data and estimated jointly with the rest of

the parameters of the VAR model.

Let t∗ be the period of the large shock (e.g., the pandemic), then the factors in that date and the

following periods are given by: st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2 and st∗+j = 1 + (s̄2 − 1)ρj−2 for

j ≥ 3.5 With this, the scaled (reduced-form) VAR model to be estimated in the first stage is:

Yt = B0 + B1Yt−1 + B2Yt−2 + . . . + BpYt−p + stut, ut ∼ N(0, Σ), (1)

where Yt is our vector of variables in t, Bp with p = 0, 1, . . . , P are the autoregressive coefficient

matrices, ut are the reduced-form residuals of the model, and Σ is the covariance matrix of the

residuals. Notably, we perform the estimation with variables in levels and thus allow for the

presence of cointegration between the economic variables. In section 2.2, we elaborate on the

economic variables of the model. However, for now, it is useful to acknowledge that Y will contain

4The exact definition constituting what is "long-term" is another research choice in this context. In our estimations,
we consider 25 years to be our long-run benchmark.

5This setup allows the scale factor to take three different values in the first three periods after the outbreak and then
decay at a rate ρ in subsequent periods. The assumed dynamics behind this scale structure align with the empirical
evidence for the year after the onset of the pandemic. Furthermore, notice the parameters are expected to be non-negative,
which also aligns with the estimation results and the resulting parameters’ distributions shown in Section 3.
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the GDP whose associated potential output (and gap) we want to know about.

Given our focus on the COVID-19 outbreak in early 2020, we want to estimate the initial non-

unitary scale factor around this period (t∗ ≡ 2020Q1) and for the subsequent two quarters (s̄1, s̄2).

Following this initial phase, we allow the scale factor to decrease gradually over time with a decay

rate ρ.6 With this structure, the additional vector of parameters to estimate is θ ≡ [s̄0, s̄1, s̄2, ρ].

We estimate θ jointly with the rest of the VAR parameters (B0, B1, . . . , Bp, Σ) along the lines of

Giannone, Lenza, and Primiceri (2015), thereby assuming the prior distributions of the VAR

coefficients to be conjugate Normal-Inverse Wishart and making a similar assumption for the scale

factors. The estimation is carried out by implementing a Metropolis-Hastings procedure where we

obtain posterior draws of both the VAR parameters and θ.

More concretely, we consider the following priors for the VAR parameters:

Σ ∼ IW (Ψ, d),

β|Σ ∼ N(b, Σ ⊗ Ω),

where β ≡ vec([B0, B1, . . . , Bp]′) and γ ≡ (Ψ, d, b and Ω) are the hyperparameter vectors. The

hyperparameters are simplified to comply with the structure of a Minnesota prior to avoid issues

of over-parametrization. That is, the parameters of interest are mostly self-determined, and the

dependence on other parameters is shrunk towards zero.

The prior of θ is defined analogously as a Normal distribution centered at 1.7 Finally, the

hyperparameters’ posterior, which includes θ, allows us to capture the dynamics of the scale factors

(st) as proposed by Lenza and Primiceri (2022):

p(γ, θ|Y ) ∝ p(Y |γ, θ) · p(γ, θ).

6Alternative adjustments to COVID-19 data for VAR models have emerged in the literature in both frequentist
and Bayesian frameworks, several of which are based on the inclusion of additional pandemic-related variables as
controls (dummies or indicators). See Ng (2021), Carriero, Clark, Marcellino, and Mertens (2022), and Hartwig (2022) for
examples.

7For stationary series, we must adopt a prior mean of zero for all coefficients. However, as in our case in this article,
when we are working with non-stationary series, it is better to set the prior mean to one to shrink towards a random
walk. Further details see Giannone, Lenza, and Primiceri (2015).
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Structural identification stage. Once the VAR model in (1) is estimated, we proceed with the

second stage, consisting of identifying our structural shocks of interest. With the identification in

place, the setup becomes a Structural Vector Autoregressive (SVAR) model. As explained below,

the specific identification scheme we choose is designed to generate the structural errors that best

explain the long-run fluctuations of output.

Let εt be the structural shocks of the model. These are linked to the reduced-form shocks (ut)

in equation (1) by an impact matrix A0 such that ut = A0εt and Σ = A0A′
0. Now, importantly,

there is not a unique A0 that satisfies these relationships. In fact, for any candidate impact matrix

A0 an alternative matrix Ä0 exists such that A0 = Ä0Q and QQ′ = I , where Q is an orthonormal

matrix. In this sense, our approach also falls within the “set identification” category. We will make

use of this non-uniqueness feature to obtain compatible draws of the impact matrix in a Bayesian

estimation setup and, simultaneously, to search for matrices’ draws yielding —across iterations of

the associated Monte Carlo Markov chain— structural errors that maximize the explained share of

the long-run output forecast error variance.

This identification strategy is implemented following Uhlig (2004). More concretely, we seek for

a target q1 satisfying:

q1 = argmax q′
1Mq1 ≡ q′

1

k∑
h=0

Ä0
′
C ′

h(eje′
j)ChÄ0q1,

subject to q′
1q1 = 1,

where q1 is a column of Q that explains the k-step-ahead forecast error of the j-th variable in Yt

(in our case, the logarithm of GDP), whose variance is given by M . Simultaneously, q1 is the

eigenvector associated with the largest eigenvalue of the matrix M ; ej is a selector vector with zeros

everywhere and a 1 in the j-th position, and Ch is a component of the long-run impact matrix of

the VAR associated with the horizon h.8 Finally, the constraint guarantees that q1 is a unit-length

column vector that belongs to an orthonormal matrix.

This method recovers all eigenvalues and eigenvectors of M and, by design, orders them (from

8Note that C(L) = I + C1L + C2L2 + C3L3 · · · + ChLh + . . . and the moving average representation of the model
-in terms of the reduced form residuals- is given by Yt = µ + C(L)ut where µ is the unconditional mean of Yt implied by
the VAR model.
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highest to lowest) by their explained share of the forecast error variance (FEV) for a target variable.

Based on these eigenvectors, we construct the impact matrix and the structural shocks, which will

also be sorted by the extent to which they explain the long-run FEV of the target variable. As a

consequence, we can gauge the set of structural shocks that explain a sizable component of the

long-run FEV of the GDP and use them to compute the long-run or permanent component of the

GDP. Finally, we use the remaining shocks (those that instead explain only short-run fluctuations) to

construct the short-run or transitory component of the GDP, as explained in the following section.9

2.1 Output gap determination within the structural model

The BSVAR and identification setup above yields the structural errors and, more importantly for

our objective, associates these to the variables’ long-run (permanent) or short-run (transitory)

components. We can reconstruct the estimated potential output and output gap based on such

information. From this point forward, we denote it as (LP-Adjusted) which is our baseline based on

a permanent-transitory (PT) identification (Uhlig, 2004) with a COVID-19 adjustment (as in Lenza

and Primiceri, 2022, hence the LP acronym).

First, we compute the historical decomposition (HD) of the model that expresses the observed

variables as a weighted sum of all structural shocks:

y1,t = HDinit
y1,t

+ HDε(1)
y1,t

+ HDε(2)
y1,t

+ · · · + HDε(k)
y1,t

, (2)

where y1,t denotes the first variable in Yt, HDϵk

y1,t
represents the contribution of the k-th structural

shock (ε(k)) to its dynamics, and HDinit
y1,t

is the sample analog to the unconditional mean of the

variable y1. Notice that analogous expressions hold for any variable in Yt. For the sake of exposition,

let us denote y1,t as the observed output.

The contribution of each structural error expressed in (2) will depend on the (finite) MA repre-

sentation of the resulting VAR model,10 and each component will indicate the impact of one of the

9Notice that a single shock will not generally replicate the entire FEV; it will only explain a large proportion. In other
words, more shocks can normally be used to increase the percentage of explained FEV if a second or third shock is also
found to explain a sizable share of the permanent component of the target.

10Note that for practical applications, this is carried out with finite-horizon analogs or approximations to the usual
MA(∞) or Wold representation of the model, in fact, the Historical Decomposition itself is usually defined just as a finite
horizon version of this representation.
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structural shocks realized in previous periods on the output in t; for example, the contribution of

the k-th structural shock in the output at t is:

HDϵ(k)
y1,t

=
t−1∑
j=0

θ
(j)
1k ϵ

(k)
t−j ,

with θ
(j)
1k denoting the coefficient in the row 1, column k within the j-th matrix in the MA

representation of the associated VAR.11

Now, the decomposition in (2) is appealing if we care about the dynamics explained by each

structural shock but by itself does not disentangle the potential output from the gap dynamics.

However, our identification setup indicates which structural errors mainly drive the permanent

component and which the transitory, making it possible to split the observed dynamics into each.

For example, in the case that only the first structural shock drives the permanent component and

the others (second to k-th shock) the transitory, each component of the output (potential GDP and

gap) is obtained as,

y1,t =

ypot
1,t︷ ︸︸ ︷

HDinit
y1,t

+ HDε(1)
y1,t

+

ygap
1,t︷ ︸︸ ︷

HDε(2)
y1,t

+ HDε(3)
y1,t

+ · · · HDε(k)
y1,t

= ypot
1,t + ygap

1,t , (3)

where ypot
1,t would denote the permanent component of output—the potential output— and ygap

1,t the

transitory component—or the output gap. It should also be noted that this method for obtaining

the gap is analogous to the one used to compute these quantities in other VAR-based studies such

as Blanchard and Quah (1989), and Chen and Gornicka (2020), the latter based on the identification

scheme of Forbes, Hjortsoe, and Nenova (2018).

2.2 Data

We assemble a dataset encompassing nine variables for seven developed economies. The vari-

ables are the Gross Domestic Product (GDP), household consumption, investment, government

consumption, CPI inflation, the interbank interest rate, the real exchange rate, the Brent oil price,

and the long-run interest rate. All variables are included in the logarithms of the levels, except for

11Such representation is the HD itself and can also be expressed as Yt = HDInit
y +

∑t−1
j=0 Θ(j)A0εt−j .
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inflation, which is included as the difference of the logarithm of CPI, and for the interest rates that

we include in levels. The variables, as they enter into the model, are depicted in Figures 8 and 9 in

the Appendix A.

The economies in our sample are United States (USA), Canada (CAN), Australia (AUS), United

Kingdom (GBR), Germany (GER), France (FRA), and Italy (ITA).12 These countries comprise some

of the world’s most influential advanced economies and are characterized by their high levels of

industrialization, technological innovation, and well-developed financial systems. In accordance,

they also represent a sizable share of the global economy. They play pivotal roles in international

trade and investment, contributing substantially to global economic stability. In addition, the

application of our method to various economies allows us to conduct external validation, ensuring

that the results are not dependent on a particular country. We depict the GDP dynamics for these

economies in Figures 8 and 9 in the Appendix A.

Although the impact of the COVID-19 shock was widespread globally, it is evident that Euro-

pean countries experienced a more significant downturn compared to the rest of the developed

economies. This could be attributed, in part, to the fact that their population was more affected

in terms of infections and deaths during the critical periods before the production of the vaccine.

Unlike Europe, where the recovery pace has been slower, the US (USA) surpassed its pre-COVID

GDP level in the third quarter of 2021 because it had a relatively large fiscal stimulus. In addition,

the US domestic expenditure has recovered faster than its GDP due to its high demand for imports

which widened the trade deficit, and to the fact that it shifted its domestic demand towards goods,

even despite being a service-oriented economy.

2.3 Empirical strategy

For purposes of the estimation of the actual gap (reported in sections 2.3 and 3), we use the complete

set of information (nine variables) and fit i) the model explained in Section 2 that corresponds to

our baseline model (LP-Adjusted) based on a permanent-transitory (PT) identification (Uhlig, 2004)

12Typically, the G7 is a group that includes United States, Canada, Japan, Germany, France, the United Kingdom,
and Italy. However, Japan has maintained interest rates close to zero for over three decades and experienced deflation,
posing challenges for identifying permanent and transitory shocks using our approach. We decided to include Australia,
which belongs to the G12 and is geographically the closest to Japan.
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with a COVID-19 adjustment (as in Lenza and Primiceri, 2022, hence the LP acronym), ii) a BSVAR

model with PT identification but no COVID-19 adjustment (denoted PT-Decomp), and iii) a BSVAR

model with a PT identification and a stochastic volatility setup, i.e., without an explicit correction

at the exact date of the COVID-19 shock (named PT-Stocvol) but where the residuals’ variance is

allowed to vary over time. On the other hand, for the evaluation stage (section 4), we use only three

of the time series in each case: Real output, inflation, and interest rate; and then, we run a Monte

Carlo simulation based on a New Keynesian model as in Benati (2008). Finally, in the estimation

and evaluation sections, we also consider standard univariate filters (HP and Christiano-Fitzgerald

bandpass filter).

In the first stage of the our econometric approach, We set a nine-variable B-SVAR in levels for each

economy with a lag length (in most cases of p = 2) choice given by the Bayesian and Hannan-Quinn

Information criteria and estimate the VAR in levels using a hierarchical modelling approach that

allows us to make inferences about the informativeness of the prior distribution of the BSVAR, as

proposed by Giannone, Lenza, and Primiceri (2015), which automatically determines a suitable

measure of shrinkage by considering a combination of conjugate priors such as a Minnesota

prior and tighter priors, when the model includes many coefficients relative to the number of

observations. As part of the procedure, we run 20000 draws and keep half of these for estimation

after the burn-in step. In addition, we explicitly model the COVID-19 extreme observations as in

Lenza and Primiceri (2022). From this first stage, we obtain a reduced-form VAR that has already

been adjusted by the scale factor (st) and incorporates the pandemic shock.

In the second stage, we identify the impact of the matrix of the SVAR by maximizing the explained

share of the forecast variance error of the GDP for a 25-year horizon as in Uhlig (2004). Concurrently,

we apply two additional restrictions: the proportion of the FEV of consumption accounted for

by the first structural error must be greater than the corresponding proportion for output, and

the proportion for output must be greater than that for investment. As explained by Cochrane

(1994) and King, Plosser, Stock, and Watson (1987), this accounts for the fact that consumption is

more closely aligned to the permanent component of GDP, while investment should reflect its most

volatile and transitory components. After verifying these restrictions and keeping the draws that

comply with them, we conducted PT decomposition and computed the permanent (and transitory)
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output component (as mentioned in section 2.1).13

As aforementioned, the decomposition and resulting impact matrix already consider the ordering

of the structural shocks according to their share of the explained variance of the target variable.14

This can be verified in Figure 1, where we can see that for the US economy only the first structural

error is necessary to account for approximately 95% of the long-run (permanent) component of the

GDP.15 In contrast, the next most important shock in explaining the GDP’s long-run FEV is instead

better associated with the short-run or transitory component. An analogous result holds for the

other economies in our sample where the first shock explains between 59% to 96% of the long-run

GDP FEV (Figure 10 in Appendix A.2).

Figure 1: Shocks explaining the highest share of long-run GDP FEV (USA)
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Note: The Figure shows the Forecast Error Variance (FEV) explained by the two structural shocks with the largest explained share for
the long-term GDP. Given a single shock explains almost 100% of GDP for large horizons (left-panel), it is associated as the main driver
of the permanent component of output. In contrast, the second highest (right panel) and remaining shocks are instead considered as
driving the transitory component of output.

In light of these results, we compute the output gap based on the historical decomposition

components attributed to the second to ninth structural shocks —i.e., those explaining only the

transitory component of GDP— and use only the first one to recover the potential GDP.16 To do this,

we compute the output gap by rerunning the baseline BSVAR model (LP-Adjusted) and shutting

13As a check, we increased the number of draws to 100000 and obtained similar results.
14This implies that the first structural shock reported by the method is the one with the largest share of explained

variance of the long-run GDP, followed by the shock with the second largest share, and so on, until the last shock that
explains the smallest share.

15In some cases, we show the results only for the US for the sake of a more transparent and simpler exposition.
However, the analogous figures and results for the other economies are included in the appendix.

16Analogously, the potential GDP can be obtained as the original series minus the transitory component.
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off the first structural shock. Thus, the transitory component is estimated based only on the other

eight shocks.17 On a related point, it should also be noted that the first structural error will explain

most of the long-run FEV of the GDP (target variable) but not necessarily the largest share of the

FEV for other variables. The relative importance of the shocks to the other variables can be seen in

the FEV decomposition per variable, as shown in Figure 13 for the US economy and Figures 14 to

19 (in the Appendix A.5) for the other countries in our sample.18

3 Results

3.1 Baseline Results

Figure 2 shows the output gap for the US economy obtained from our proposed baseline BSVAR

model. This approach —labeled LP-Adjusted— incorporates both a PT decomposition and a

scale factor adjustment, which deals with the observations during the COVID-19 period. Before

COVID-19, the estimated output gap reflects the early 1990s and 2000s recessions and the global

financial crisis (GFC) in 2008.19 Another notable feature of our method is its ability to gauge the

uncertainty associated with the estimate over time. As observed, there is a significant increase in

volatility during the COVID-19 period compared to previous periods.

17The methodology is not limited to selecting a single shock to identify the permanent component of GDP in the long
run. For example, in the case of Italy, it could consider employing the first two shocks (84%) as the first shock explains
59% of the long-term GDP variations, while the second accounts for nearly 25%. In this case, the transitory component
(output gap) is explained by using seven shocks (from the third to ninth structural shocks).

18We leave additional results that are related to other variables and shocks for the appendix as we are only concerned
with approximating the target variable here (GDP).

19The NBER recession data are available at http://www.nber.org/cycles/cyclesmain.html. Those crises correspond to
the shaded areas in Figure 3 associated with the turning points determined by the National Bureau of Economic Research
(NBER) for recession.
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Figure 2: Baseline results: Output gap for US economy
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Notes: The Figure shows the results of the baseline BSVAR model with Permanent-Transitory decomposition and Covid-19 adjustment
(LP-Adjusted). The solid black line represents the median estimates. The solid and dotted red lines represent the percentiles of 5%, 16%,
84% and 95%, respectively.

During the COVID-19 pandemic, the US gap underwent a steep decline (−10.6%) in the second

quarter of 2020; however, unlike in the 2008 recession, the downturn was not persistent. Instead, it

bounced back in the following quarters. As in most economies, the decrease is largely explained

by lockdown measures, while the gradual reopening of the economy induces the recovery. It is

worth highlighting that, unlike the aftermath of the 2008 financial crisis that led to a negative gap

persisting for more than a decade, a partial closure of the US GDP gap was observed following the

COVID-19 pandemic. A similar pattern is obtained for the other six economies, although many of

them show a positive output gap in 2023Q1 (see Figure 11 in Appendix A.3). Consequently, the

average output gap for the seven countries fell to −13.6% during the second quarter of 2020. This

downturn was most pronounced in the United Kingdom, where the gap plummeted to −24%. In

contrast, Australia experienced the least impact, with a gap registering at −7.8%.

3.1.1 Comparison with alternative estimation methods

We also compare our estimations with those generated by usual filtering techniques, namely the

Hodrick-Prescott (HP) and Christiano-Fitzgerald (CF) filters, as well as to an estimation computed
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using the real potential GDP as released by the U.S. Congressional Budget Office (FRED-CBO).20

The output gap estimates for the compared methods and our proposal are shown in Figure 3. We

can see that the univariate filters (HP, CF) tend to deliver a large gap right before COVID-19 and

a swift and sizable subsequent recovery, which sends that gap onto positive territory (and at or

beyond 2%) in a few quarters. These features may indicate an overestimation of the gap, specifically

when we see that the other estimates, including our proposal, do not display such behaviour, and

instead suggest a dynamic yet more moderate recovery. Notably, when tying these results to the

associated potential output dynamics, they indicate that our proposal does not lower the potential

output significantly during the pandemic period, which reflects the adjustment of the model to

incorporate the COVID-19 observations in the estimation sample without assuming drastic changes

in its data-generating process.

Concerning the official CBO estimate, it is important to note that our model consistently generates

a negative gap after the 2008 financial crisis, in accordance with the economic consensus which is

related to recent studies on hysteresis and the scarring effects of protracted recessions (e.g., Cerra,

Fatás, and Saxena, 2023; Aikman, Drehmann, Juselius, and Xing, 2022). Similarly, using the CBO

estimate as a benchmark, the correlation with our model’s estimate is notably higher than the filters

(86% vs 30% and 75%). Similar findings are obtained for the other six economies (see Figure 11 in

Appendix A.3).

20We take the data from the FRED webpage (https://fred.stlouisfed.org/graph/?g=f1cZ).
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Figure 3: Comparison methodologies for output gap estimation (USA)
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Notes: The black line represents the median of the baseline model (LP-Adjusted). The orange and blue represent the Hodrick-Prescott
(HP) and Christiano-Fitzgerald (CF) univariate filters. The red one is the output gap using the real potential GDP estimated by the U.S.
Congressional Budget Office (CBO). Shaded areas indicate U.S. recessions and the COVID-19 period.

Finally, we compare the proposed BSVAR model (LP-Adjusted) with two models using the same

type of identification setup (PT decomposition as in Uhlig, 2004). The first alternative is a BSVAR

without a scaling adjustment for the COVID-19 episode (PT-Decomp). The second is a model

where instead of using a scale factor at a known —large shock— date to adjust for the pandemic

observations, an implicit time-varying uncertainty adjustment is allowed through a stochastic

volatility structure of the errors (PT-Stocvol).

The associated output gaps of the two BSVAR alternatives are shown in Figure 4. A contrast

between the baseline and the alternatives emerges at first sight: both the PT-Decomp and the

PT-Stocvol generate a less negative gap during the COVID-19 outbreak, which implies that in those

cases, the potential output is affected more drastically relative to our baseline model. Hence, as

with some of the simpler filters, the alternatives tend to overestimate the impact of the shock on the

long-run output.

Regarding the volatility around the estimates, the PT-Decomp displays the largest uncertainty,

as reflected by wider percentile ranges than in the baseline. On the other hand, the PT-Stocvol
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successfully mitigates volatility (yielding at a similar range as the baseline); however, it is the

method where the estimated potential output is affected the most during the downturn. Therefore,

we do not obtain an adequate estimate of the output gap from the stochastic volatility setup.

Comparable results are obtained for the remaining six economies.

Figure 4: US Output gap - two alternative BSVAR models
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Notes: The left panel shows the results of the BSVAR model with Permanent-Transitory decomposition and no COVID-19 adjustment
(PT-Decomp). The right panel shows the results of the Stochastic Volatility BSVAR with Permanent-Transitory decomposition and no
Covid-19 adjustment (PT-Stocvol). The solid black line represents the median estimates. The solid and dotted red lines represent the
percentiles of 5%, 16%, 84%, and 95%, respectively.

3.1.2 Outlier observations around the COVID pandemic

Given that our main concern is to study the adjustment of potential output estimates to drastic

magnitude shocks, such as those observed in the COVID-19 outbreak, verifying the estimates of

the scale factors generated by our baseline estimates can be insightful. Principally, if scaling is

irrelevant, the posterior estimates should suggest s̄0 = s̄1 = s̄2 = 1; otherwise, they should be

sizeable. We estimate these parameters as in Lenza and Primiceri (2022) and present our estimate

of scale factors in Figure 5.

The parameters posteriors are drawn based on a Metropolis-Hastings algorithm with a Minnesota

Prior. Thus, we estimated the scaling factors jointly with other hyperparameters in a hierarchical

structure. The resulting posteriors for s̄0, s̄1, s̄2 peak around 1.5, 13, and 7, respectively, indicating

that, in effect, it is relevant for this sample to scale up the errors around the COVID-19 observations

to account for the steep increase in volatility of that period, but that may not characterise its data-

generating process, nor should it drastically influence the BVAR estimates. A country-by-country
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Figure 5: Posterior distribution of the overall volatility scaling factors
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Notes: Each column represents the scale parameters θ ≡ [s̄0, s̄1, s̄2, ρ]. Each row represents the results for each country. The vertical

dotted black line marks the mode of the distribution.

analysis shows that Italy and France were the most adversely impacted in 2020Q1, exhibiting an

estimated parameter s̄0 nearly twice as high as in the rest of the economies. We must remember

that these nations were the most severely affected by the virus at the pandemic’s outset. Similarly,

the estimates for the UK reflect an increased volatility during the second and third quarters of

2020 compared to the other countries. Finally, the decay coefficient (ρ) for the US peaks around 0.5,
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which, together with s̄2, implies that the scale factor falls by half after 2020Q3 and subsequently

non-linearly towards one. In contrast, for other European countries, the parameter may denote a

greater persistence of the pandemic effects. Among the latter cases, the one with the most saliently

persistent impact is Italy.

The dynamics of the output gap distribution during the pandemic. To further illustrate the

impact of the COVID-19 shock on the output gap, we can depict the distributions of the draw

estimates for dates around the episode as shown in Figure 6. We show the estimated empirical

distribution for the quarter of the shock (2020Q1), the subsequent two quarters, and the first quarter

of 2023 as a reference for a date when the potential output dynamics are, in principle, back to

normal (here, we implicitly recognise the transitory nature of the pandemic shock).

Figure 6: Distribution of the US output gap estimation during COVID-19 shock and 2023Q1.
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2020Q3

2023Q1

−0.2 −0.1 0.0 0.1
output gap
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Notes: To construct these histograms, we take the draws from the MCMC simulations for each of the displayed quarters.

As we can see in the figure, the gap distribution shifts noticeably to the left during the pandemic,

implying that the potential GDP was not strongly affected by the downturn (and instead, the gap

lowered in line with the observed GDP). In addition, the distribution spread increased, reflecting

an increase in uncertainty around the estimate during the pandemic. Afterwards, we observe the

distribution shifting back to pre-COVID-19 levels, although it still reflects increased volatility. In

summary, we can see that the impact on the mean gap was transitory but with a somewhat larger
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uncertainty remaining. Nonetheless, this greater uncertainty is approximately one percentage

point higher than before, rather than orders of magnitude higher, as may be suggested by a model

without a scale factor adjustment for the COVID-19 downturn.

4 Evaluation of the method

Evaluating the relative performance of our estimates is a challenging task as our target, the potential

GDP, is an unobserved variable, and thus, there is no well-defined target against which to perform

a "horse race" using a set of competing methods. However, an assessment of these methods is

still in order, and alternative evaluation methods can be proposed. These usually imply assuming

knowledge of relevant features of the potential output that can be tested.

One route taken by the literature (e.g., Chen and Gornicka, 2020; Camba-Mendez and Rodriguez-

Palenzuela, 2003; Pichette, Robitaille, Salameh, and St-Amant, 2019) comprises setting up a Phillips

Curve with the output gap on the right-hand side of the equation. Subsequently, an estimation

method of the output gap is assessed according to its capacity to forecast inflation in the context

of the Phillips Curve. Here, we assume that the output gap is a relevant variable for determining

inflation and that the relationship captured in the Phillips curve is stable over time; that is, the curve

setup is an appropriate device for testing the relationship between the output gap and inflation.

Although that is a feasible venue, it also opens discussions about how stable the Phillips Curve in

each country is, or even considering whether such a relationship exists (e.g., McLeay and Tenreyro,

2020), or if its slope has flattened over time (Hazell, Herreño, Nakamura, and Steinsson, 2022).

These discussions are particularly relevant in recent times when the trade-off between output

stabilisation and inflation is strongly felt worldwide. However, such debates are beyond the scope

of our study and may divert attention from what we aim for in this study, approximating the

potential output.

Alternatively, and along similar lines as Canova (2020), we take a more direct approach and

assume to count with an available true measure of the potential output, which would be approxi-

mated with a set of (econometric) output gap methods that use other economic variables as input,

and whose estimates are assessed based on their co-movement with the actual output gap. We
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do this in the context of a Monte Carlo simulation, where the set of economic variables and "true"

potential output are simulated based on an economic general equilibrium model.

4.1 The model used to simulate the output gap

We consider a standard three-equation New Keynesian DSGE model along the lines of Benati (2008),

but where the output is assumed to have a unit root component that behaves as a random walk

with a drift:

yP
t = δ + yP

t−1 + vt, vt ∼ WN(0, σ2
v). (4)

The associated log-linearized model is given by:

πt = β

1 + αβ
πt+1|t + α

1 + αβ
πt−1 − κŷt + ut, ut ∼ WN(0, σ2

u), (5)

ŷt = γŷt+1|t + (1 − γ)ŷt−1 − σ−1(Rt − πt+1|t) − (1 − γ)∆yP
t , (6)

Rt = ρRt−1 + (1 − ρ) [ϕππt + ϕyŷt] + ϵR,t, ϵR,t ∼ WN(0, σ2
R). (7)

The first two equations, the hybrid Phillips curve and dynamic IS, feature both backward and

forward-looking components. In contrast, the monetary policy rule is given by a Taylor rule with

smoothing. πt is inflation, Rt is the nominal rate, and the real GDP is Yt which in the model is

rescaled by its unit root component (Y P ) as ŷt = ln
(
Yt/Y P

t

)
to achieve stationarity. The latter

implies that ŷt is the output gap or the output as a deviation of the potential GDP given by its

stochastic trend. The other variables are set as log-deviations of their non-stochastic steady-state

values.

The model parameters are approximated with a combination of calibration and estimation.

The estimated parameters of the model, Θ = {σ2
R, σ2

u, σ2
v , κ, σ, α, γ, ρ, ϕπ, ϕy}, were obtained for

each considered economy using Bayesian methods. The posterior mode is found via simulated

annealing as in Benati (2008), and the posterior distribution of Θ is characterized by implementing

a Random-Walk Metropolis-Hastings algorithm as in An and Schorfheide (2007). Both simulated

annealing and Metropolis simulations require the evaluation of the likelihood (and posterior) of

the model based on its Sims canonical form and associated state-space representation. On the other
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hand, we use a calibrated value of 0.99 for the discount factor.

Table 1 shows median —across country-specific estimates— the parameters’ priors, posterior

modes, and percentiles obtained in our estimations. An additional step in the simulations is the

scale factor adjustment of the variances, which is revised every 10% of the iterations and adjusted

depending on the fraction of accepted draws in the subset draws. With that, the average acceptance

ratio across —country-specific— simulations is 0.229.

Table 1: Prior, Posterior modes and standard deviations for the parameters (median values)

Prior Posterior

Parameter Prior Density Mode Standard Deviation Mode 90% coverage percentiles

σ2
R Inverse Gamma 0.01 0.01 0.0008 [0.0007, 0.00011]

σ2
u Inverse Gamma 0.01 0.01 0.0010 [0.0008, 0.0012]

σ2
v Inverse Gamma 0.01 0.01 0.0012 [0.0010, 0.0014]

κ Gamma 0.10 0.10 0.191 [0.120, 0.322]

σ Gamma 1 2 4.294 [3.036, 7.891]

α Beta 0.90 0.05 0.901 [0.776, 0.952]

γ Beta 0.50 0.25 0.750 [0.690, 0.854]

ρ Beta 0.7500 0.10 0.688 [0.618, 0.762]

ϕπ Gamma 1.50 0.25 2.278 [1.888, 2.687]

ϕy Gamma 0.50 0.15 0.589 [0.389, 0.843]

Note: The average acceptance ratio of the Metropolis algorithm across countries estimates is 0.229. The

values reported correspond to the median values across country-specific estimations of the economic

model.

4.2 Evaluation method of the output gap estimations

Based on each estimated New Keynesian model (one for each country in our sample), a Monte

Carlo simulation is carried out, where, in each iteration, a sample (33 years long) of the model

variables is simulated and a corresponding "true" output gap is obtained. The simulated observable

economic variables are then used as inputs for a set of competing econometric methods that

estimate the output gap of the simulated model. For each iteration, the cross-correlation between

each econometric estimate of the output gap and the simulated —actual— output gap is calculated
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and recorded.

In other words, in each simulation, we use the economic model to obtain an output gap and

other consistent economic variables with the former.21 Then, we feed the econometric methods

—that includes our proposal— with the observable economic variables to generate an estimated

output gap. Finally, we assess the estimates of all methods in terms of the co-movement between

their estimated gap and the actual gap (simulated).

The methods compared are: (i) our proposal, a Permanent-transitory decomposition with a Lenza

and Primiceri (2022) type adjustment for large shocks episodes with a known date (LP-Adjusted),

(ii) a Permanent-Transitory decomposition via a BSVAR (PT-Decomp), (iii) a Hodrick-Prescott

filter (HP), and (iv) a Christiano-Fitzgerald Band Pass filter (CF). The latter two filters are more

frequently used and widely available methods of estimation of the potential output. In contrast, the

Permanent-Transitory decomposition is relatively more complex as it aims to achieve a structural

identification for an SVAR based on the long-run forecasts of the output. Finally, our proposed

method combines the structural long-run forecast identification approach with an estimation

adjustment to account for the presence of drastically large scale shocks whose date is known.

Notably, the identification method in the SVAR models methods (i) and (ii) (or LP-Adjusted and

PT-Decomp) are the same. Thus, we are carrying two tests here: First, whether it is worthwhile to

focus on a structural identification method despite its higher complexity, and second, if it is also

relevant to adjust the estimates of the model for the presence of very large shocks.

Finally, to make the experiment more relevant in our context of interest (an economy affected by

an unprecedented scale shock), we incorporate a large-scale shock in each simulation that mimics

the dynamics of the COVID-19 episode. For this, we apply a short-lived high-magnitude negative

productivity shock at the end of each simulated sample, which, after impacting the variables (e.g.,

the output), still allows them to approach their previous trend values by the last date but without

depicting a full recovery.

21Here, by consistent, we mean that these are generated within each iteration by the same shocks.
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Figure 7: Cross-correlation between the output gap estimates and their simulated target
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Note: median (black), 68% coverage, and 90% coverage percentiles of the cross-correlations between the output gap
estimate of each method and the simulated output gap of the economic model.

The results for all the countries in our sample are reported in Figure 7, where, for each country in

a row panel, we show the cross-correlation between the true (simulated) output gap and the one

estimated by the econometric methodology in each column. Each plot shows the cross-correlations

across simulated samples, with the black line depicting the median estimates and the blue areas the

68% and 90% coverage percentiles. Ideally, we want to have a positive and high cross-correlation at

25



all horizons with the smallest possible uncertainty across iterations.

We find two salient patterns. First, the standard filtering techniques (HP and CF) can be distorted

by the large-scale shock and generate negatively correlated estimators with the target in some

cases, and even in short horizons.22 In those cases, the feature of the HP and CF filters of yielding

too-sharp and quick reversions of the gap in a single period —after the large-scale shock is revealed

to be transitory— is the reason behind the deterioration of the output estimates. This drawback is

corrected by the methods that decompose the permanent and transitory components of the output

(LP-Adjusted and PT-Decomp.), thereby mitigating the reliability and stability issues of output gap

methodologies suggested by studies such as Marcellino and Musso (2011).

Now, it should be mentioned that the correlation sign reversion does not occur in all cases, and

in fact, it will also not appear if we instead perform the experiment without large-scale shocks.

However, even if this issue does not emerge, we still see that there is a cross-correlation gain when

switching from the standard filters (HP, CF) to those using a permanent-transitory identification

scheme.

The added value of adjusting the estimator. A second salient pattern we obtain is that when

we use our proposal —i.e., we complement the identification in the BSVAR model with the Lenza

and Primiceri (2022) adjustment— there is both a decrease in the implied volatility of the estimator

(something we verified in prior sections with observed data) and a substantial cross-correlation gain.

In fact, in the best cases, the peak correlation can jump up to beyond 0.8 from values surrounding

0.5 at best (depending on the alternative method considered). To see this, we can notice how the

correlation in the first column is higher than in the other ones for all rows.

In summary, the results of this experiment favor both the identification method for computing

the output gap and also the addition of the adjustment via the scaling factor as in our proposal,

which ultimately will outperform the other alternatives for all countries. Thus, in this case, it is

worthwhile to use a relatively more complex but structural estimation method. Moreover, it is even

better to complement it with the adjustment for the large-scale shock.

22As a check, we repeated the experiment without the large-scale shock, in which case the abrupt reversion to negative
correlations does not occur. Such estimations and figures are available upon request.

26



5 Concluding remarks

This study examines whether potential output models should be adjusted to account for rare,

large-magnitude shocks, such as those experienced during the COVID-19 lockdown in 2020. Ideally,

we would like to include a complete set of observations in the model while preventing observations

of unprecedented magnitude —that do not resemble the sample data-generating process— from

affecting the quality of the econometric modelling framework under consideration.

To investigate this question, we utilize a model that integrates a wide range of information

sources within a structural framework in line with the approach of Uhlig (2004). Our identification

strategy leverages the relationship between consumption and output to distinguish the permanent

and transitory components of GDP. Building on this framework, we introduce an adjustment by

applying a scaling factor to the residuals, explicitly focusing on the period around the COVID-19

pandemic outbreak, in line with the methodology proposed by Lenza and Primiceri (2022).

Our results, based on a sample of seven developed economies, indicate that only one structural

error is enough to account for most of the long-run behaviour of GDP (and potential output) and

that the remaining shocks majorly explain transitory fluctuations (i.e., the gap). At the same time,

simulation exercises show that the adjusted model outperforms both simple filtering alternatives

and similarly complex models that abstract from adjusting the large-scale shock periods or that do

so in alternative setups that do not explicitly account for outlying observations at the specific dates

of the high-magnitude episodes (e.g., models with stochastic volatility). Concurrently, our setup

prevents quick output gap reversals after downturns or drastic changes in the potential output after

high-magnitude transitory observations. In that sense, while our setup aligns with the findings

of recent studies on the scarring effects of economic downturns (e.g., Cerra, Fatás, and Saxena,

2023; Aikman, Drehmann, Juselius, and Xing, 2022), it still prevents the unprecedented-magnitude

observations from affecting the resulting model substantially.

It is relevant to mention that, in our proposal, we can better approximate the potential GDP (and

gap) by trading off the possibility of disentangling output dynamics into separate structural drivers

with economic interpretation (e.g., monetary, financial, global, supply, and demand, etc.). Not being

able to carry out such a type of exercise is the cost of accessing our identification strategy, which
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is strictly concerned with an endogenous determination of the horizon profile of the structural

shocks. In that spirit, a separation of the output dynamics into interpretable fundamental drivers

where we can also draw the main lessons from this study—that allow mitigating the approximation

costs of ad-hoc changes in the term horizon of the shocks, as commonly done in other structural

identification setups—is left for future research.
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A Baseline model: Results

A.1 Data

Country Data Source

USA Bureau of Economic Analysis (BEA), Federal Reserve Bank of St. Louis (FRED), OECD
CAN Statistics Canada, datastream
AUS Australian Bureau of Statistics, datastream
GBR Office for National Statistics, datastream
GER Eurostat, OECD, datastream
FRA Eurostat, OECD, datastream
ITA Eurostat, OECD, datastream
Real Oil price (OIL) From Bloomberg; oil price is deflacted by each country’s CPI.

OECD: The Organisation for Economic Co-operation and Development

Table 2: Sources of economic indicators for selected advanced countries
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Figure 8: Data for USA, AUS, CAN and GBR
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Figure 9: Data for FRA, GER and ITA
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A.2 Explained share of Forecast Error Variances: Other economies

Here, we show the explained FEV share by the two first structural shocks for the rest of the countries

in our sample. The selected shocks are those that explain the highest share of the long-run GDP.

Figure 10: Contribution of FEV explanation over each variable for the rest of six economies
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A.3 Estimated output gap: Other economies

Figure 11: Baseline results: Output gap for the other six economies
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A.4 Distributions of the output gap 2020-2023: Other economies

Figure 12: Distribution of the output gap estimation for selected quarters
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A.5 Forecast Error Variance decomposition for the baseline model

Figure 13: Forecast Error Variance decomposition (FEVs) by variable (USA)
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Figure 14: Forecast Error Variance decomposition (FEVs) by variable (AUS)
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Figure 15: Forecast Error Variance decomposition (FEVs) by variable (CAN)
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Notes: The model has 9 variables and 9 structural shocks (sh1 to sh9). The forecast error variance represents the variance of the errors
(or residuals) in the model’s predictions. Each subplot shows the percentage by which each shock explains the variability in the
forecasted values of the endogenous variable at different horizons.
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Figure 16: Forecast Error Variance decomposition (FEVs) by variable (GBR)
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Notes: The model has 9 variables and 9 structural shocks (sh1 to sh9). The forecast error variance represents the variance of the errors
(or residuals) in the model’s predictions. Each subplot shows the percentage by which each shock explains the variability in the
forecasted values of the endogenous variable at different horizons.
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Figure 17: Forecast Error Variance decomposition (FEVs) by variable (FRA)
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Notes: The model has 9 variables and 9 structural shocks (sh1 to sh9). The forecast error variance represents the variance of the errors
(or residuals) in the model’s predictions. Each subplot shows the percentage by which each shock explains the variability in the
forecasted values of the endogenous variable at different horizons.

43



Figure 18: Forecast Error Variance decomposition (FEVs) by variable (GER)
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Notes: The model has 9 variables and 9 structural shocks (sh1 to sh9). The forecast error variance represents the variance of the errors
(or residuals) in the model’s predictions. Each subplot shows the percentage by which each shock explains the variability in the
forecasted values of the endogenous variable at different horizons.
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Figure 19: Forecast Error Variance decomposition (FEVs) by variable (ITA)
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Notes: The model has 9 variables and 9 structural shocks (sh1 to sh9). The forecast error variance represents the variance of the errors
(or residuals) in the model’s predictions. Each subplot shows the percentage by which each shock explains the variability in the
forecasted values of the endogenous variable at different horizons.
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B Other models: Permanent-transitory SVAR without COVID-19 ad-

justment and with Stochastic Volatility.

Figure 20: Output gap - two alternative BSVAR models (PT-Decomp and PT-Stocvol)
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Notes: Left panel: The Figures show the results of the BSVAR model with Permanent-Transitory decomposition but without Covid-19
adjustment (PT-Decomp). Right panel: The Figures show the results of the BSVAR model with Permanent-Transitory decomposition
and Stochastic volatility but without Covid-19 adjustment (PT-Stocvol). The solid black line represents the median estimates. The solid
and dotted red lines represent the percentiles of 5%, 16%, 84% and 95%, respectively.
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