Summary Ch 8 Non-Tradable Goods and the Real Exchange Rate

The MX model overestimates the role of the TOT as a driver of fluctuations. Here we break the assumption that all goods are perfectly traded by introducing Non Tradable goods.

A first consequence is that we start accounting for the Real Exchange Rate. In too simplified models this variable is constant. Here it will fluctuate

$$
\begin{equation*}
\text { Real Exchange Rate: } R E R_{t}=\frac{\varepsilon_{p} R_{i}}{P_{t}} \tag{1}
\end{equation*}
$$

(Relative price of consumption goods baseets)
ε_{t} : Nominal ER. Price of foreign curency in terms of loool curency inits.
When RER increases the local goods basket becomes relatively expensive. This is denoted as an depreciation. Similarly, if the RER decreases, we observe an appreciation.
Three approaches: 1. TNT model: endowment framework, 2. SVAR: Empirical framework, 3. MXN: SOE-RBC framework with exportable, importable and non-tradable goods.

TNT Model

Endowment Open Economy model, with one fully imported good (not domestically produced), one fully exported good (not domestically consumed), and one non-tradable good.

Households:

$$
\begin{array}{lll}
\max & \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right) & \text { Units: importables }\left(P_{t}^{m}=1\right) \\
c_{t}^{m} c_{t_{t}}^{n} d_{t+1} & y^{x}, y^{n}: \begin{array}{c}
\text { Constant endowments } \\
\text { (n: Non tradable) }
\end{array}
\end{array}
$$

$$
c_{t}=A\left(c_{t}^{m}, c_{t}^{n}\right)
$$

$$
A(, .): \text { Increasing, concave, } \mathrm{HO1}
$$

$$
c_{t}^{m}+p_{t}^{n} c_{t}^{n}+d_{t}=\frac{d_{t+1}}{1}+\underline{t o t_{t}} y^{x}+p_{t}^{n} y^{n}
$$

$$
d_{t} \text { External debt maluring in } t
$$

$$
r>0 \text { interest rate (constant) }
$$

$$
\lim _{j \rightarrow \infty}(1+r)^{-j} d_{t+j} \leq 0
$$

FOCs

$$
\begin{array}{lc}
{\left[C_{t}^{m}\right]:} & U^{\prime}\left(c_{t}\right) A_{1}\left(c_{t}^{m}, c_{t}^{n}\right)=\lambda_{t} \\
{\left[d_{t+1}\right]:} & \lambda_{t}=\beta(1+r) \lambda_{t+1}, \\
{\left[C_{t}^{n}\right]^{\prime}:} & p_{t}^{n}=\frac{A_{2}\left(c_{t}^{m}, c_{t}^{n}\right)}{A_{1}\left(c_{t}^{m}, c_{t}^{n}\right)}, \\
{[\text { TVC }]:} & \lim _{j \rightarrow \infty}(1+r)^{-j} d_{t+j}=0 .
\end{array}
$$

Given $A(,$,$) is H D 1,(4)$ con be rewititen as

$$
\begin{equation*}
\left[C_{t}^{n}\right]^{\prime \prime}: \quad p_{l}^{n}=P\left(\frac{c_{t}^{m}}{c_{t}^{n}}\right) ; \quad \text { with } P^{\prime}(\cdot)>0 \tag{6}
\end{equation*}
$$

This condition inuolves $A_{1}\left(c_{6}^{m}, c^{n}\right)$ because $\lambda_{t} / U^{\prime}(\epsilon t)$ is replaced foom (1) in the original FOC wrt C_{B}^{n}

Link between RER and relative price of Non-Tradables: there is a one-to-one inverse relationship between the RER and the relative price of non-tradable goods.

This is why paper talk about RER and prices of Non-Tradables as analogous quantities

Where the second to last equality uses the LOP assumption ($P_{t}^{m}=\varepsilon_{t} P_{t}^{m x}$)

This result implies the RER can be clirectly associated to the relative price of consum ption yoods $\left(P_{t}^{c}\right)$.
Now we check how P_{t}^{c} is linked to P_{t}^{n} (and then how RER is linked to P_{t}^{n})
Firms bundling (or producing) C_{t} by aggregaling the sub-baskets C_{0}^{m}, c_{t}^{n} solve:

$$
\max _{c_{t}^{m}, c_{t}^{n}} p_{t}^{c} A\left(c_{t}^{m}, c_{b}^{n}\right)-C_{t}^{m}-p_{t}^{n} c_{b}^{n}
$$

FOCs:

$$
\begin{aligned}
& {\left[C_{t}^{m}\right]} \\
& P_{t}^{c} A_{1}\left(c_{t}^{m}, c_{t}^{n}\right)=1 \\
& \Rightarrow \Delta_{1}\left(c_{t}^{m}, c_{t}^{n}\right)=R E R_{t} \\
& \text { given } A_{1}(,,) \text { is HDO: } \\
& A_{1}\left(C_{t}^{m} C_{6}^{n}\right)=\Delta_{1}\left(\frac{C_{t}^{m}}{C_{0}^{n}}, 1\right) \\
& \text { and by (6) } \\
& =A_{1}\left(p^{-1}\left(P_{t}^{n}\right), 1\right)=\text { RER }_{t} \\
& \text { then: } \\
& \left.R E R_{t}=e\left(p_{t}^{n}\right) \text {, with } e^{\prime}(\cdot)<0 \text { (or } R E R_{t} \propto \frac{1}{p_{t}^{n}}\right)
\end{aligned}
$$

Therefore, if the prices of non-tradable increase, the RER appreciates (decreases)

Market clearing

Non-tradable goods:

$$
c^{n}=y^{n}
$$

(8) Can only be consumed/produced

Subst. (8) in the HH budget constraint to obtain dynamics of debt (current account):
Resource constraint of tradable sector:

$$
\begin{equation*}
c_{t}^{m}+d_{t}=\frac{d_{t+1}}{1+r}+t_{0} t_{t} y^{x} \tag{9}
\end{equation*}
$$

Intertemporal Budget Constaint analysis:

Now assume $\quad \beta=\frac{1}{1+r}$
Then given (3) we have: $\quad \lambda_{t}=\lambda \quad \forall t \Rightarrow C_{t}^{m}=C^{m}$
Iterate BC forward (to infinity) \& use TVC (5): $\quad c^{m}=-\frac{r}{1+r} d_{0}+\frac{r}{1+r} \sum_{t=0}^{\infty} \frac{t o t_{t} y^{x}}{(1+r)^{t}}$.
The assumption $(\beta(1+r)=1)$ and the FOC wrt C_{t}^{n} Also imply: $C_{t}^{n}=C^{n}$
Then, by (6) we get an expression for the equilibrium RER: $\quad p^{n}=P\left(\frac{c^{m}}{y^{n}}\right) \quad(11) \quad \begin{aligned} & \uparrow P^{n} \equiv \downarrow R E R \\ & \text { (RER appreciates) }\end{aligned}$

RER appreciates when:

- Supply of non-tradable falls $y_{t}^{n} \downarrow$
- Current TOT or supply of tradables increase $\left(C^{m} \uparrow, \operatorname{tot}_{t} \uparrow, y^{x} \uparrow\right)$
- Future TOT or y^{x} are expected to grow

Effects of TOT shocks

Temporary shock: tot increases, other tot temain unchanged

$$
E_{\text {ffect on }} \operatorname{RER}:\left.\frac{\partial p^{n}}{\partial t o t}\right|_{\text {temporary }}=\frac{r}{1+r} \frac{y^{x}}{y^{n}} P^{\prime}\left(\frac{c^{m}}{y^{n}}\right)>0 \text {. RER decreases (appreciâes) }
$$

Increase in relative price of exportables creates an income effect, driving up the demand for all goods. Given the supply of NT is fixed, its price increases to eliminate excess demand.

With higher price NT goods the RER will go down (appreciates).

Permanent shock: TOTt increases for all t (starting at $\mathrm{t}=0$)

Effect on RER:

From (10) and (11) we have: $\left.\frac{\partial p^{n}}{\partial t o t}\right|_{\text {permanent }}=\frac{y^{x}}{y^{n}} P^{\prime}\left(\frac{c^{m}}{y^{n}}\right)>0$

Moreoever,

$$
\left.\frac{\partial p^{n}}{\partial t o t}\right|_{\text {permanent }}>\left.\frac{\partial p^{n}}{\partial t o t}\right|_{\text {temporary }}>0
$$

thore permanent the increase in TOT the larger the income effect it generates, the larger will be the increase in NT demand, price, RER appreciation

Effect on output:

Unexpected and permanent in crease in TOT at $\mathrm{t}=0$
with non-tradable the output Yt is: $\quad y_{b}=\frac{P_{t}^{x} y^{x}+P_{t}^{n} y^{n}}{P_{t}}$
Multiply/divide by P_{t}^{m} :

$$
y_{t}=\frac{\operatorname{tot}_{t} y^{x}+p_{t}^{n} y^{n}}{p_{t}^{c}}
$$

Given $p_{t}^{c}=\frac{1}{A_{1}\left(c^{m}, y^{n}\right)}, p_{t}^{n}=\frac{A_{2}\left(c^{m}, y^{n}\right)}{A_{1}\left(c^{m}, y^{n}\right)}: y_{t}=A_{1}\left(c_{t}^{m}, y^{n}\right) \operatorname{tot}_{t} y^{x}+A_{2}\left(c_{0}^{m}, y^{n}\right) y^{n}(12)$
Assume $A(.,$.$) is a Cobb-Douglas aggregator: \quad A\left(C^{m}, y^{n}\right)=\left(C^{m}\right)^{\alpha}\left(y^{n}\right)^{1-\alpha}$
Then (12) becomes: $\quad y_{t}=c_{t}\left[\alpha \frac{\operatorname{tot}_{t} y^{\alpha}}{c_{t}^{m}}+(1-\alpha)\right]$
Implying: $\left.\quad \frac{\partial y_{0}}{\partial t o t}\right|_{1-\alpha=0}=y^{x}>0$ and $\left.\frac{\partial y_{0}}{\partial t o t}\right|_{1-\alpha=1}=0$
the larger the share of non-tradables in consumption
the lower the effect of TOT shoces on Output
We can see how the inclusion of NT goods dampens the effect of the TOT on the output. Then, adding NT goods can be good for reconciling the results in the model with the data. We do this in the MX-N model.

Interest Rate shocks:

One time increase in interest rate at $t=0$: FOCs evaluated at imply that: $C_{1}^{m}>C_{0}^{m}$.
In addition it follows that C_{0}^{m} falls wrt previous levels. Then: $\frac{\partial C_{0}}{\partial r_{0}}<0$
This result, together with (6), (8) implies:

$$
\frac{\partial p_{0}^{n}}{\partial r_{0}}=P^{\prime}\left(\frac{c_{0}^{m}}{y^{n}}\right) \frac{1}{y^{n}} \frac{\partial c_{0}^{m}}{\partial r_{0}}<0
$$

RER depreciates (increases)
Intoutiom: Hoveholds want to save by consuming
less of all goods. Given the supply of NT is fixed

SVAR Empirical Evidence

the price of non-tradables falls to clear the market

Here the SVAR from the previous chapter is extended to include the RER.
Let:

$$
x_{t}=\left[\begin{array}{lllll}
\widehat{t o t}_{t}, & \widehat{t b}_{t}, & \widehat{y}_{t}, & \widehat{c}_{t}, & \widehat{i}_{t}, \\
\widehat{R E} R_{t}
\end{array}\right]^{\prime}
$$

SVAR:

$$
x_{t}=\mathbf{h}_{\mathbf{x}} x_{t-1}+u_{t} \quad \text { Identification of ТОТ shocks: }
$$

$$
\begin{aligned}
& u_{t}=\Pi \epsilon_{t} \\
& \epsilon_{t} \sim(0 . D)
\end{aligned}
$$

$$
\epsilon_{t} \sim(0, I)
$$

$$
\begin{aligned}
& \epsilon_{t} \sim(0,1) \\
& \Pi_{1, j}=0 \text { for } j=2, \ldots, 6
\end{aligned}
$$

It is assumed the TOT is an exogenous univariate $\operatorname{AR}(1)$ process: $\quad h_{x, 1, j}=0 \quad$ for $j=2, \ldots, 6$
All variables except the TB are log-deviations from a quadratic trend.
For TB: trade balance divided by trend component of output and then removing a quadratic time trend
RER set relative to the US: $\quad R E R_{t}=\frac{\varepsilon_{t} P_{t}^{U S}}{P_{t}}$
Data source: WDI (38 countries -w/ at least 30 consecutive data points in all variables-, poor and EMEs, period: 1980-2011, country-wise estimation)
$\widehat{t o t}_{t}=\rho \widehat{t o t}_{t-1}+\sigma_{\text {tot }} \epsilon_{t}^{\text {tot }} ; \quad \epsilon_{t}^{\text {tot }} \sim(0,1)$

Median		$\sqrt{1-\rho^{2}}$
Interquartile Range	$[0.41,0.61]$	0.10
$0.09,0.13]$		

Impulse Response to A 10% Increase in the Terms of Trade SVAR Evidence, Median across 38 countries

- TOT shocus are short livee

TB improves after the shock (HLM effect)

- TOT improvements are expansionary

TOT increase leads to

 appreciation of RER (\downarrow RER)Variance decomposition:

	$t o t$	$t b$	y	c	i	$R E R$
Median	100	12	$\mathbf{1 0}$	9	10	14
Median Absolute Deviation	0	7	7	6	7	11

TOT shocks explain on avg 10% of output.

Then this SVAR is also at odds w/ conventional wisdom (and MX model) indicating TOT is a key driver of fluctuations

MXN model

RBC-SOE extended to include exportable, importable and non-tradable goods
-TOT are taken as given.
-All goods are produced and consumed (unlike TNT model) and production uses labor and K as input. -Factors are specific to each sector.

The Household Problem: Maximize

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, h_{t}^{m}, h_{t}^{x}, h_{t}^{n}\right)
$$

subject to the period budget constraint
$c_{t}+i_{t}^{m}+i_{t}^{x}+i_{t}^{n}+p_{t}^{\tau} d_{t}+\Phi_{m}\left(k_{t+1}^{m}-k_{t}^{m}\right)+\Phi_{x}\left(k_{t+1}^{x}-k_{t}^{x}\right)+\Phi_{n}\left(k_{t+1}^{n}-k_{t}^{n}\right)=$

Units: Final Goods
P_{t}^{τ}. Relative price of tradables
d_{0} : Debt due in t

$$
\frac{p_{t}^{\tau} d_{t+1}}{1+r_{t}}+w_{t}^{m} h_{t}^{m}+w_{t}^{x} h_{t}^{x}+w_{t}^{n} h_{t}^{n}+u_{t}^{m} k_{t}^{m}+u_{t}^{x} k_{t}^{x}+u_{t}^{n} k_{t}^{n}
$$

and to the laws of motion for physical capital
$k_{t+1}^{m}=(1-\delta) k_{t}^{m}+i_{t}^{m} ; k_{t+1}^{x}=(1-\delta) k_{t}^{x}+i_{t}^{x} ; k_{t+1}^{n}=(1-\delta) k_{t}^{n}+i_{t}^{n}$.
Final goods Firms: $\operatorname{Max} a_{t}-p_{t}^{2} a_{t}^{2}-p_{t}^{n} a_{t}^{n}$

$$
\text { s.t. } a_{t}=\left[x_{t}\left(a_{t}^{\tau}\right)^{1-\frac{1}{\mu_{2 n}}}+\left(1-\chi_{z}\right)\left(a_{t}^{n}\right)^{1-\frac{1}{\mu_{2 n}}}\right]^{\frac{1}{1-\frac{1}{\mu_{2 n}}}}
$$

$a_{t}=$ domestic absorption of final goods a.
$a_{t}^{\tau}=$ domestic absorption of a composite of traded goods.
$a_{t}^{n}=$ (domestic) absorption of nontraded goods
$\mu_{\tau n}=$ elasticity of substitution between T and N goods.
$\chi_{\tau}=$ expenditure share on tradables if $\mu_{\tau n}$.

$$
a_{t}^{\tau}=\left[\chi_{m}\left(a_{t}^{m}\right)^{1-\frac{1}{\mu m x}}+\left(1-\chi_{m}\right)\left(a_{t}^{x}\right)^{1-\frac{1}{\mu_{m x}}}\right]^{\frac{1}{1-\frac{1}{\mu m x}}}
$$

$a_{t}^{\tau}=$ domestic absorption of tradable goods
$a_{t}^{n}=$ domestic absorption of importable goods.
$a_{t}^{x}=$ domestic absorption exportable goods.
$\mu_{m x}=$ elasticity of substitution between importables and exporta-
bles.
$\chi_{m}=$ expenditure share if $\mu_{m x}=1$.

Importable good firms:	$\max p_{t}^{m} y_{t}^{m}-\omega_{t}^{m} h_{t}^{m}-u_{t}^{m} k_{t}^{m}$ h_{i}^{m}, k^{m} s.t. $y_{t}^{m}=A_{t}^{m}\left(k_{t}^{m}\right)^{\alpha m}\left(h_{t}^{m}\right)^{1-\alpha_{m}}$
Exportable good firms:	$\begin{aligned} & \max _{h_{t}^{x}, k_{t}^{x}} p_{t}^{x} y_{t}^{x}-\omega_{t}^{x} h_{t}^{x}-u_{t}^{x} k_{t}^{x} \\ & \text { s.t. } y_{t}^{x}=A_{t}^{x}\left(k_{t}\right)^{\alpha_{x}}\left(h_{t}\right)^{1-\alpha_{x}} \end{aligned}$
Non-tradable goods firms:	$\begin{aligned} & \max _{h_{h_{t}^{n}}, k_{t}^{n}} p_{t}^{n} y_{t}^{n}-w_{t}^{n} h_{t}^{n}-u_{t}^{n} k_{t}^{n} \\ & \text { s.t. } y_{t}^{n}=A_{t}^{n}\left(k_{t}^{n}\right)^{\alpha_{n}}\left(h_{t}^{n}\right)^{1-\alpha_{n}} \end{aligned}$
Interest rate (IDEIR):	$\begin{aligned} & r_{t}=r^{*}+p\left(d_{t+1}\right) \\ & p(d)=\psi\left(e^{d-\bar{d}}-1\right) \end{aligned}$
TOT process:	$\ln \left(\frac{t o t_{t}}{\overline{t o t}}\right)=\rho \ln \left(\frac{t o t_{t-1}}{\overline{t o t}}\right)+\sigma_{t o t} \epsilon_{t}^{t o t} ;$

Calibrated parameters:

Calibrated Structural Parameters												
${ }_{*}^{\rho}$	$\sigma_{t o t}$	$\begin{gathered} \alpha_{m}, \alpha_{x} \\ 0.35 \end{gathered}$	$\begin{gathered} \alpha_{n} \\ 0.25 \end{gathered}$	$\begin{gathered} \omega_{m}, \omega_{x}, \omega_{n} \\ 1.455 \end{gathered}$	$\mu_{m x}$	$\begin{gathered} \mu_{\tau n} \\ 0.5 \end{gathered}$	$\overline{t o t}$	$\begin{gathered} A^{m}, A^{n} \\ \hline \end{gathered}$	$\stackrel{\beta}{1 /\left(1^{\beta}+r^{*}\right)}$	σ	$\begin{gathered} \delta \\ 0.1 \end{gathered}$	$\begin{gathered} r^{*} \\ 0.11 \end{gathered}$
Implied Structural Parameter Values												
ϕ_{m}	${ }_{*}{ }_{x}$	ϕ_{*}	*	$\begin{gathered} \chi m \\ 0.8980 \end{gathered}$	$\begin{gathered} \chi_{\tau} \\ 0.4360 \end{gathered}$	$\begin{gathered} \bar{d} \\ 0.0078 \end{gathered}$	A^{x}	$\begin{gathered} \beta \\ 0.9009 \end{gathered}$				
* country specific estimates $\quad \frac{\sigma_{i}}{\sigma_{⿹}}, \frac{\sigma_{H}}{\sigma_{\text {l }}}$: Conditional on TOT shocks									$s_{n}: p^{n} y^{n} / y, s_{x}: x / y$, $S_{t t:}:(x-m) / y$ with: $y=p^{m} y^{m}+p^{x} y^{x}+p^{n} y^{n}$			

Relevant parameters for checking the effect of the TOT shocks:
ρ and $\sigma_{\text {tot }}$: persistence and volatility of TOT shocks.
-

- Steady State trade share: $(x+m) / y=0.39$. The larger, the larger the effect of TOT on output.

Median of country specific IRF to a ten percent TOT shock (MXN model)

- Supply side: Production of Exportables increases, of Importables decreases, of non-tradable goods increases.
- Demand side: Demand for importable goods and non-traded goods increases given lower relative price. Domestic demand for exportable goods falls. The improvement in TOT generates a wealth effect that increases total demand.
- Price of non-tradable rises (RER appreciates)
- Exports and imports increase. The trade balance improves. Then the HLM effect holds.

Comparison of data and theoretical counterparts

For comparison purposes we should measure the empirical and theoretical variables of the model in the same units. Then, a theoretical counterpart to the observable variables is constructed.

Unit: constant LCU (local currency units).
For the construction: deflate nominal variables by a Paasche GDP deflator

Share of Variance Explained by Terms of Trade Shocks:

SVAR Versus MXN Predictions

	$t b$	y	c	i	$R E R$
MXN Model	21	13	18	11	1
SVAR Model	12	10	9	10	14

Note. Cross-country medians.
Note: to compute the share of variance the procedure consists on:

1. with tot_t as the whole driving process, compute the variance of output predicted by the MXN model.
2. Divide this value by the observed unconditional variance of output predicted by the SVAR model (variance of output when all shocks are active)
The same is done for the other variables.

Importance of Consistent Measuring of Variables between Empirical and Theoretical model

Suppose that instead of computing the predictions of the model in constant prices we would obtained them in units of current consumption (as can be a common practice).

In that case, variance of all variables is higher than in constant prices (over-predicting the variability). That may favor the conventional wisdom view where TOT shocks are important drivers of fluctuations.

TOT Disconnect

Median and average results showed suggest MXN model and the SVAR have similar implications with regards to the importance of the TOT shocks for aggregate movement in output.

However, when checking predictions at country level the conclusion is the opposite: when plotting the \% of explained variance by country there are important differences between SVAR and MXN model. The match is good on average but is also poor at the individual level.

Conclusion

Conventional wisdom: TOT represent a major source of fluctuations for EMEs.
SVAR results: the explanatory role for TOT is modest.
MXN model results: with non-tradable goods the role is modest too.
This does not mean that world prices are not important shocks. TOT are a highly aggregated summary variable that may capture poorly the transmission mechanism of certain individual prices Tipically a country trades a large number of goods and services.

To test this further: Fernandez, Schmitt-Grohe, and Uribe (JIE,2017) estimate a variation of the SVAR in which the TOT is replaced by 3 world commodity prices. Then, jointly, these prices explain about 30% of the aggregate fluctuations.

