Summary Ch 4 Open Economy Real Business Cycles Model

Before: w/ physical capital and AR(1) shocks the SOE model can explain the countercyclical trade balance.

Now: Can it also explain the other business cycles properties?

Examples:

. Elastic Labor Supply
To give a better chance, add to the model: Uncertainty in technology shocks
Capital depreciation

:Y~ fhe modol become
™ SOE-RBC

Model:
= N N
Max Bo S AU (et he) (4.1) Stationarity: Ct ~ RW
. =0 In the previous model consumption is a random walk (not stationary).
subject to This is troublesome, the steady state becomes history dependent.

et 5(‘1“&1 e R d= (4.2) The model is valid but after a shock there is no guarantee of
TR e ol convergence to the SS it was approximated around.
yo = AF (ke ) = (4.3)
Also, the variables stop having well defined moments. For that, we
must adjust the model to induce stationarity.
Strategy used here:_time varying risk premium in rate of debt (then
time varying rate, s.t. Ct is no longer a RW)
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To make things simpler, here we set a centralized version of the model where all
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Household’s Optimality Conditions
MI: et ki1 — (1 =0k + P(kigr — k) + (L +r—1)di—1 = AF (ke he) + dy (4.6)
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decisions are taken by the household (same conditions hold with firms; pag. 77).

To continue we specify functional forms:
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Calibration:

We need to calibrate [w & § * p o & p FLJ V)

We use 3 types of strategies (restrictions)
A. Give values to parameters from external sources (not the particular data being explained)
(o Lit: 22, 87011, 004, B=1/01rrey )

B. Target First Moments. Here: labor share = 0.68, tb/y = 0.02

C. Give values to target Second Moments. Here: Gy, Gi, Gi, 0ty Piage fign

Some values in B imply a parameter values in a straightforward way (e.g., w/ labor share of 0.68: & = 0.32)
For the rest:

Step 1: Let the remaining parameters to define be ©= l:Lu 3 doe ?\'_.I

Guess values for all but 1 of the parameters in © (here :J)

Steps 2-4: Solve analytically for the remaining parameter and steady state.

2. Given a guess for W find h (SS of labor)
First get k/h from Euler equation: L=pl<(¢/h) +4-5]
plug it into the labor market equation: W"=(1-¢)Lk/h)'(
Solve for h; with h solve for k = (k/h)h, and for y via SS of production function: Y= Alely h
3. LetSw, be the average trade balance-to output ratio (that we found in B as 0.02)
inSS: Sw=r'd (using the fact that J=§.or =0 ), get: d = SuYlr*
4. Find ¢ from th‘% resource constraint: c+fw+ r‘w(ea'g_nd =y
Step 5: w/ SS (c, k, h, d) and parameters at hand compute second moments predicted by the model
(Theoretical moments, e.g., from Var matrix) ~ X(8)= [0y G G Tippy Grrling )]
Step 6: Compute distance between model’s implied moments and targeted moments: D(6)=[X(e)-x']

Step 7: Repeat by adjusting guess for & until D is small (D < D* -threshold-)

After calibration we compare the model and data
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Other Stationarity Inducing Methods:

Complete Markets in Assets: we add state-consumption smoothing (before only time smoothing)
Main change: Budget constraint (and then Euler equations)

E¢ (ig\ib&n = bist AFlUenho) - G- = Blician-1) a_{t,t+1}: SDF

W/ complete markets the future assets keep the expectation operator. It denotes the aggregation of
state-contingent (value of) assets, times the probability of the states.



Other stationarity inducing devices (continued)
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Assumption: Frictionless international markets, then UIP holds e+ = (1

For foreign agents:

[ni): Atgtﬂ:ﬁ'vau \e = S -Xl Gontlent
For domestic agents: [bw]- )‘Wu\ = pAen ’IJ t= V\ij'%' soe

Then we get a Perfect Risk Sharing Condition that holds w/o Expectations

MUCt (or Ct if CRRA) is no longer a RW; now it’s constant (and stationary)

(In non SOE environments similar conclusions hold but in terms of consumption differential)

To recap: Incomplete markets: . ¢, he) = Bl (G hm)

Complete markets:  Ue (Ch ;) = Conglant

Current account and trade balance in CAM:

e =Tor+ be- Y be ;“.',L",:':d
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Internal Debt Elastic Interest Rate (IDEIR):

The debt in the premium is a decision variable (or internalized as such)

R=04 PCaD  (hegore: di (ovtiogs-esoi)
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Calibration is the same as EDEIR but SS value of d changes.

Euler equation changes:

External Discount Factor
Induce stationarity by having a time-varying discount factor.

The discount factor will depend on the economy variables.

UMP:  max Eoipeuc@,m
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Internal Discount Factor

The DF now becomes a decision variable (as agents now internalize
the effects of their choices in the DF)

e[;ﬂ = PCC(_? l’\t) Qb ) @():i
O is now & choice variable
Portfolio Adjustment Cost Model (PAC)
Include adjustment costs of debt in budget constraint:
- 2
- - : 3
do = Urt-) dey “Ye Cerlet Qliley —1) + '\yz(éb-&)

Effect: Euler equation depends on assets
M- ws(di-d)] = U+ D) B\

Note: a time varying interest rate as a stationarity inducing device
works in an SOE. However, it does not work in a LOE setup.

Here it prevents having Ct = Et[Ct+1] (int. rate no longer cancels out)

However, in LOE models we still have that CtAD = Et[Ct+1/D] as the
rate cancels out between countries (CAD: consumption differential).
Thus, in the LOE we need other stationarity inducing device, for
example, adjustment costs on the bonds.

In the LOE what we want in addition (to have stationarity) is for the
Euler eq. to depend on the assets (bonds or debt).

Perpetual Youth and OLG approaches

Alternatively, we can consider approaches where the debt has a self-
stabilizing mechanism. For example, setups where cohorts of agents
are born without debt (or assets) and other die so some assets
disappear. With this feature, even if individual variables are random-
walks an stationary debt induced stationarity of other variables
Global Solution Method

We can also consider as alternative solutions that do not depend too
much on approximations around the steady state. The model is
identical to the baseline SOE except we assume:

More impatience is usually assumed in globally solved models as
higher order terms now show up and when added imply stationarity

(precautionary savings create a well defined debt distribution)

The solution algorithm is Value Function Iteration. It implies setting the
model recursively (Bellman equation):

V(dkA) = mm} {U(AF(K,M HUD) k- G UK
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St . d < A (upper vt of At’.bt/‘ sct [arjze)

The state space is discredited with 9 points for InA
from -0..4495 to 0.04495, 70 points for d, and 30 for k.

B(1+r*) set far enough from 1 (0.9922).

With d large (borrowing constraint does not bind):

dera4s,a4as] — wel2y,318]
Here the results are not supported by the data (too
high tb/y and volatility of investment). Reason: with
high debt the intertemporal rate of substitution is too
volatile. Then the upper bound on debt is set at 1

d=1
Comparison between models

The approaches yield very similar moments and IRF
dynamics, implying that most stationarity inducing
devices have similar implications.

Only salient difference: CAM model. Due to constant
MUC property the model yields a more stable
consumption and is unable to generate a
countercyclical trade balance (to GDP). In this case,
the only variable offsetting the effect of income
increases is the investment. It achieves a negative
response on impact (IRF) but is not enough to
generate a negative correlation over the business
cycle (moments).

Extra: Finding Second Moments of the model

Once the solution is obtained, we can get the
implied second moments of the model as follows:

Model Solotion : gt = ‘3x '5(\&
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We can get the variance of X: Z.x
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We apply the vec operator: (and vec (ABC) = CC'@A)Vec(B))
Ve (Ty) = Vec (hxZxhy) +Vec(Ze)

— Fuee(s.) +vec(£0)
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