MS Macroeconomics - Tech Slides 2
 Constrained Optimization Refresher and Monopolistic Competition

Camilo Granados
University of Texas at Dallas
Spring 2024

Outline

I. Refresher of Constrained Optimization
II. Monopolistic Competition

Constrained Optimization (with equality constraints)

Commonly used in economics. The reason being that we care a lot about making the best (optimizing) out of limited resources (constraints)

Examples: Maximizations: how to allocate our time between studying and entertainment, how to spend our wage income. Minimizations: How to lower our commuting cost the most (given we have to go somewhere regularly).

Consider the problem:

$$
\begin{aligned}
& \text { Extremize }_{x_{1}, \cdots, x_{n}} f\left(x_{1}, \cdots, x_{n}\right) \\
& \text { subject to } g^{j}\left(x_{1}, \cdots, x_{n}\right)=b_{j}, \text { with } j=1, \cdots, m ;(m<n)
\end{aligned}
$$

"Extremize" means that we want to either minimize or maximize the objective function $f(\cdot)$
Here: f is the objective function, g^{j} are the constraint functions, and b_{j} are the constraint constants.
Naive approach: Solve the problem without the constraints and then check if these are satisfied.
\rightarrow what we did in topic 2 (RBC)
Better approach: (often used in economics) replace the constraints in the objective function and solve the "unconstrained" version of the new problem. Convenient, but oftentimes not feasible.

Then, more generally, we resort to the Lagrangian, or the method of Lagrange Multipliers.

Setting the Lagrangian

The Lagrangian is given by a modification of the objective function that accounts for the constraints:

$$
\mathcal{L}=f\left(x_{1}, \cdots, x_{n}\right)+\sum_{j=1}^{m} \lambda_{j}\left(\phi_{j}-g^{j}\left(x_{1}, \cdots, x_{n}\right)\right)
$$

Where the constants $\lambda_{1}, \cdots, \lambda_{m}$ are called Lagrange Multipliers.

How to solve: O. Set \mathcal{L}

1. Take the partial derivatives of \mathcal{L} with respect to x_{1}, \cdots, x_{n} and $\lambda_{1}, \cdots, \lambda_{m}$ and equal to zero (FOC: First Order Conditions)
2. Use resulting system of equations to solve for the (optimal) values of x_{1}, \cdots, x_{n} and $\lambda_{1}, \cdots, \lambda_{m}$

At the end we get the stationary points of the Lagrangian: $x^{*}=\left(x_{1}^{*}, x_{2}^{*} \cdots, x_{n}^{*}\right)$. Under certain conditions, this is the solution of the problem.

Note: This is the simplest case, hence the "certain conditions". The FOC yields necessary conditions that satisfy the solution, however, we should check Second order conditions to check for sufficient conditions. However, for the economic application of this lecture we just need to consider FOC.

First Order Conditions

This is how the FOC looks:

$$
\frac{\partial \mathcal{L}}{\partial x_{i}}=\frac{\partial f\left(x_{1}, \cdots, x_{n}\right)}{\partial x_{i}}-\sum_{j=1}^{m} \frac{\partial g^{j}\left(x_{1}, \cdots, x_{n}\right)}{\partial x_{i}}=0
$$

and

$$
\frac{\partial \mathcal{L}}{\partial \lambda_{j}}=b_{j}-g^{j}\left(x_{1}, \cdots, x_{n}\right)=0
$$

for all $i=1, \cdots, n$ and $j=1, \cdots, m$.
Note that the second buch of equations, once equalized to zero and arranged will be the constraints themselves $\left(b_{j}=g^{j}\right)$. That's why in many econ courses and applications we don't explicitely take these derivatives, instead, we keep the (budget) constraints in the system of equations we solve at the end.

Example

$$
\begin{array}{r}
\max _{x, y} U(x, y)=(x+1)(y+1)=x y+x+y+1 \\
\text { subject to } x+2 y \leq 30 \\
x \geq 0, y \geq 0
\end{array}
$$

Here the utility increases in x and y, then we can just assume the constraint binds (is satisfied with equality) and the quantities of both commodities are positive.
Then we can just solve: $\quad \max _{x, y} U(x, y) \quad$ s.t. $\quad x+2 y=30$
Then the lagrangian is: $\quad \mathcal{L}=(x+1)(y+1)+\lambda(30-x-2 y)$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x}=y+1-\lambda=0 \\
& \frac{\partial \mathcal{L}}{\partial y}=x+1-2 \lambda=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=30-x-2 y=0
\end{aligned}
$$

from the first equation: $\quad \lambda=y+1$
Subst. λ in the second equation to get: $\quad x-2 y-1=0$.
Use this equation and the third one to get: $\quad x^{*}=\frac{31}{2}, y^{*}=\frac{29}{4}$

Monopolistic Competition \longrightarrow blend $\{$ Perfect Competition \rightarrow Firms are pricetakers of vs.
 Monopolistic Power \rightarrow each Firm has Price Setting Power

The tool we just reviewed is used extensively in economics (a lot of econ is about picking allocation of recourses subject to scarcity constraints).

We covered it because we will use this tool repeatedly when reviewing the following market structure: Monopolistic Competition.

In a nutshell: we want to model a market where producers can act as monopolists (hence the "monopolistic") but are still affected by the decisions of other firms (hence the "competition")

Examples: many! actually, easier to find than for other market structures. Think of magazine markets, videogames, websites, fast food, etc.

Basically, any producer that owns a unique product (e.g. Mc Donalds) but still faces some competition by other firms that supply substitute products (e.g. Burger King) works as an example.

Set up

- Large number of households indexed and sorted on the unit interval $[0,1]$
(e.g., $C_{0}, C_{0.25}$ is the consumption of households " 0 " and " 0.25 ")
- Each household owns a firm and produces a differentiated variety of goods.
- Households want to consume a positive quantity of each type of good (love for variety).
- Then the consumption basket is an aggregate of all available goods: $C_{i}=\left[\int_{0}^{1} C_{i j}^{\frac{\sigma-1}{\sigma}} d_{j}\right]^{\frac{\sigma}{\sigma-1}}$
- Goods are imperfect substitutes Implications: Each firm (household producer) will act as monopolist, but the demand they face is also affected by other firms behavior (prices) (monopolistic competition)
- C_{i} is defined C ES aggregate (as above). The associated CPI is given by: $P_{i}=\left[\int_{0}^{1} P_{i j}^{1-\sigma} d j\right]^{\frac{1}{1-\sigma}}$
- The CES displays an elasticity of substitution between any two varieties equal to $\begin{aligned} \sigma>1\end{aligned}$. The higher σ is, the more substitutable the goods are. This elasticity is constant i.e., does not depend on the allocation, time or other variables.

Set up (cont.)

- Each firm produces its good using its own labor. Supplying labor (working) causes disutility
- holding (real) money provides utility.

Then, the utility can be described by: $\quad U\left(C_{i}, \frac{M_{i}}{P}, L_{i}\right)=\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)^{1-\alpha}-\frac{L_{i}^{\beta}}{\beta}$
Where: C_{i} : consumption of househould $i, \overline{M_{i}}$: (nominal) money holdings of household i , L_{i} : Labor supply of household i, P : General price level (CPI).

- Households resources consist of their sales revenues $\left(P_{i} Y_{i}\right)$ plus their initial money holdings $\left(\bar{M}_{i}\right)$. They will use these resources for buying consumption goods and increasing their money holdings: $\frac{\text { (Budget constraint) } \int_{0}^{1} P_{j} C_{i j} d_{j}+M_{i}=P_{i} Y_{i}+\bar{M}_{i}}{\text { Spending }=\text { Resources }}$
- Technology: $Y_{i}=L_{i}$ (simple production function, production increases with the factor used).

Decisions of household i
Then, the problem solved by the household i consists on determining the following quantities: optimal demand of each good $j\left(C_{i j}\right)$, the total consumption $\left(C_{i}\right)$ and money holdings $\left(M_{i}\right) \quad C_{i}, M_{i}$
Finally, the problem solved by the firms is to decide on their price level P_{i}
Firms decide:

Solution method

We will divide the solution procedure in three steps:

1. Solve for the consumption demand of each good (variety) $: C_{i j}$
2. Solve for the household allocation between consumption and money: C_{i}, M_{i}
3. Solve for the production and pricing decisions (here we assume homogenenous firms)

1. Solving for $C_{i j}$

This step is specific to the CES formulation, i.e., does not depend on the particular utility function choice.
Household i will maximize consumption subject to a spending level X_{i} (given).

$$
\max _{C_{i j}}\left[\int_{0}^{1} C_{i j}^{\frac{\sigma-1}{\sigma}} d j\right]^{\frac{\sigma}{\sigma-1}} \text { s.t. } \int_{0}^{1} P_{j} C_{i j} d j=X_{i}
$$

A simpler problem that yields the exact same solution is:

$$
\operatorname{Max} C_{i}^{\frac{\sigma-1}{\sigma}} \text { s.b. Resoavesto } \begin{gathered}
\text { Spendon } \\
\text { Conumption } \\
C_{i}^{\frac{\sigma-1}{\sigma}}
\end{gathered} \underbrace{\max _{i j}} \underbrace{\int_{0}^{1} C_{i j}^{\frac{\sigma-1}{\sigma}}} d j \text { s.t. } \int_{0}^{1} P_{j} C_{i j} d j=X_{i}
$$

We set the lagrangian and get the first order conditions:

$$
\mathcal{L}=\int_{0}^{1} C_{i j}^{\frac{\sigma-1}{\sigma}} d j+\lambda\left(X_{i}-\int_{0}^{1} P_{j} C_{i j} d j\right)
$$

FOC:
wrt variety j

$$
\left[C_{i j}\right]: \quad \frac{\sigma-1}{\sigma} C_{i j}^{\frac{-1}{\sigma}}=\lambda P_{j}
$$

1. Solving for $C_{i j}$ (cont.)

Notice that this holds for any $j \in[0,1]$. Then let's consider this condition for any two goods j and k :

$$
\text { for j: } \quad \frac{\sigma-1}{\sigma} C_{i j}^{\frac{-1}{\sigma}}=\lambda P_{j} \quad \text { for k: } \quad \frac{\sigma-1}{\sigma} C_{i k}^{\frac{-1}{\sigma}}=\lambda P_{k}
$$

Divide these expressions:

$$
\begin{equation*}
\frac{C_{i k}}{C_{i j}}=\left(\frac{P_{k}}{P_{j}}\right)^{-\sigma} \tag{1}
\end{equation*}
$$

Rewrite (1): $\quad\left(\frac{c_{i k}}{C_{i j}}\right)^{\frac{\sigma-1}{\sigma}}=\left(\frac{p_{k}}{P_{j}}\right)^{1-\sigma}$
integrate over k:

$$
\begin{aligned}
& \int_{0}^{1}\left(\frac{c_{i k}}{C_{i j}}\right)^{\frac{\sigma-1}{\sigma}} d k=\int_{0}^{1}\left(\frac{P_{k}}{P_{j}}\right)^{1-\sigma} d_{k} \\
& C_{C_{i}^{\frac{\sigma-1}{\sigma}}}^{\frac{1}{C_{i j}^{(\sigma-1) / \sigma}} \int_{\frac{C_{i}}{1}}^{C_{i j}^{\frac{\sigma-1}{\sigma}}} \frac{C_{i j}^{\sigma-1}}{\sigma}}=\frac{P^{1-\sigma}}{P_{j}^{1-\sigma}}
\end{aligned}
$$

when integrating over any variety "j" (or "k") we used that from definitions of C_{i} and $P_{i}: \quad C_{i}^{(\sigma-1) / \sigma}=\int_{0}^{1} C_{i j}^{(\sigma-1) / \sigma} d j$ and $P^{1-\sigma}=\int_{0}^{1} P_{j}^{1-\sigma} d j$

1. Solving for $C_{i j}$ (cont.)

+ Rearrange and solve for the individual demand (variety ${ }^{\boldsymbol{j}}$):

$$
\begin{equation*}
C_{i j}=\left(\frac{P_{j}}{P}\right)^{-\sigma} C_{i} \tag{2}
\end{equation*}
$$

Intuition: Demand for good j is proportional to total consumption, and inversely proportional to its relative price

Note: the inverse relationship is regulated by how substitutable is the good.

2. Allocation between C_{i} and M_{i}

From (2) it also follows (by multiplying by P_{j} and integrating over j) that $X_{i}=P C_{i}$. Use this to rewrite the Utility Maximization Problem:
$U\left(C_{i}, \frac{M_{i}}{p}, L_{i}\right)$

$$
\max _{C_{i}, M_{i}, L_{i}} \overbrace{\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)^{1-\alpha}-\frac{L_{i}^{\beta}}{\beta}} \text { s.t. } \overbrace{C_{i} P}^{X_{i}}+M_{i}=P_{i} Y_{i}+\bar{M}_{i}
$$

This utility function is a Cobb-Douglas aggregate (in C_{i} and M_{i}).
A standard result for a CD function is: Optimal Expenditure in $A=\frac{C D \text { coef for } A}{\text { Sum of CD coefs }}$ Total Income Then given Y_{i}, \bar{M}_{i}, the CD solutions for our quantities of interest are:
$A^{\alpha} B^{B}$, income I
$P_{A \cdot} \cdot A^{*}=\frac{\alpha}{\alpha+\beta} \cdot I \rightarrow A^{*}=\frac{\alpha}{\alpha+\beta} \frac{I}{P_{A}}$
$B^{*}=\frac{\beta}{\alpha+\beta} \cdot \frac{I}{P}$

- algebra steps here

$$
P C_{i}=\alpha\left(P_{i} Y_{i}+\bar{M}_{i}\right) \quad \underline{M_{i}}=(1-\alpha)\left(P_{i} Y_{i}+\bar{M}_{i}\right)
$$

2. Allocation between C_{i} and M_{i} (cont.)

From these expressions we have: $C_{i}=\frac{\alpha}{1-\alpha} \frac{M_{i}}{P}$. plug it in (2):

$$
\begin{equation*}
C_{i j}=\frac{\alpha}{1-\alpha} \frac{M_{i}}{P}\left(\frac{P_{j}}{P}\right)^{-\sigma} \tag{3}
\end{equation*}
$$

This is the optimal decision rule for consumption of good j vs. increasing money holdings (saving).
Consumption of variety j decreases in relative price and in money holdings.
3. Production and Pricing decisions

Replace C_{i}, M_{i} and $Y_{i}=L_{i}$ in the utility function:

$$
U=\left(\frac{\not \alpha}{P} \frac{\left(P_{i} Y_{i}+\bar{M}_{i}\right)}{\nless}\right)^{\alpha}\left(\frac{1}{P} \frac{1}{1-\alpha}(1-\alpha)\left(P_{i} Y_{i}+\bar{M}_{i}\right)\right)^{1-\alpha}-\frac{Y_{i}^{\beta}}{\beta} \Rightarrow U=\frac{P_{i} Y_{i}}{P}-\frac{Y_{i}^{\beta}}{\beta}+\frac{\bar{M}_{i}}{P}
$$

Total demand for each good i is the sum over the k households demands:

$$
Y_{i}=\int_{0}^{1} \underbrace{C_{k i} d k}_{\substack{\text { replace } \\ \text { from (3) }}}=\int_{0}^{1} \frac{\alpha}{1-\alpha} \frac{M_{k}}{P}\left(\frac{P_{i}}{P}\right)^{-\sigma} d k=\frac{\alpha}{1-\alpha} \frac{1}{P}\left(\frac{P_{i}}{P}\right)^{-\sigma} \underbrace{\int_{0}^{1} M_{k} d k}_{M} \Rightarrow \mathbf{Y}_{\mathbf{i}}=\frac{\alpha}{1-\alpha} \frac{\mathbf{M}}{\mathbf{P}}\left(\frac{\mathbf{P}_{\mathbf{i}}}{\mathbf{P}}\right)^{-\sigma}
$$

Thus we get the typical downward sloping AD curve $\left(Q_{i}=D_{i}\left(\frac{P_{i}}{P}, \frac{M}{P}\right)\right)$

3. Production and Pricing decisions (cont.)

Maximizing the new transformed $U(\cdot)$ gives (from the FOC):

Replace Y_{i} :

$$
\frac{P_{i}}{P}=\left[\frac{\sigma}{\sigma-1}\left(\frac{\alpha}{1-\alpha}\right)^{\beta-1}\left(\frac{M}{P}\right)^{\beta-1}\right]^{\frac{1}{1+\sigma(\beta-1)}}
$$

\therefore when ΔM the effect on Y and $\frac{P_{i}}{P}$ depends on β, σ. If $\beta=1$ the relative price doesn't change and ΔM is accomodated by ΔY.

As $\beta>1, \Delta M$ leads to $\Delta \frac{P_{i}}{P}$ together with quantity adjustment.

General Equilibrium

Now we consider the implications for the general output and level of prices.
For that, a key assumption we use is that households and firms are symmetric, i.e., they all take analogous decisions: $Y_{i}=Y_{j}=Y, P_{i}=P_{j}=P$.

With symmetric HH relative price is 1 :
$1=\frac{\sigma}{\sigma-1} Y^{\beta-1} \quad P=\frac{\alpha}{1-\alpha}(M) \propto M$
$\frac{P_{i}}{p}=1$

Does this mean Money is always neutral?

Not always, e.g., with menu costs the models implies monetary non neutrality.
Intuition: ΔM small then prices won't change (not worth assuming the cost) $\bar{P} \Rightarrow$ non neutrality.
More technically, deviations from optimal price have only second order effects on profits (then firms don't adjust their price) whereas first and second on social welfare (then output increases).

Output is a constant markup and money is neutral, i.e., $\Delta M \Rightarrow \Delta P$ proportionally and the $\overline{\text { effect on } Y \text { is null. prices accomodates to undo the }}$ effect of money

Derivation optimal consumption-money allocation (step 2)

$$
\mathcal{L}=\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)^{1-\alpha}-\frac{L_{i}^{\beta}}{\beta}+\lambda\left(P_{i} Y_{i}+\bar{M}_{i}-C_{i} P-M_{i}\right)
$$

FOC:

$$
\begin{aligned}
& {\left[C_{i}\right]: \quad \alpha\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)^{1-\alpha} C_{i}^{-1}=\lambda P} \\
& \text { [} \left.M_{i}\right]: \quad\left(\frac{C_{i}}{\alpha}\right)^{\alpha}(1-\alpha)\left(\frac{M_{i} / P}{1-\alpha}\right)^{-\alpha} \frac{1}{(1-\alpha)} \frac{1}{P}=\lambda \\
& \frac{1}{P}\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)^{-\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)\left(\frac{M_{i} / P}{1-\alpha}\right)^{-1}=\lambda \\
& (1-\alpha)\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)^{1-\alpha}\left(\frac{M_{i} / P}{1-\alpha}\right)^{-1}=\lambda P
\end{aligned}
$$

Divide $\left[C_{i}\right]$ by $\left[M_{i}\right]$:

$$
\frac{\alpha\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} \nsim P}{1-\alpha}\right)^{1-\alpha} C_{i}^{-1}}{(1-\alpha)\left(\frac{C_{i}}{\alpha}\right)^{\alpha}\left(\frac{M_{i} \nsim}{1-\alpha}\right)^{1-\alpha}\left(M_{i} / P\right)^{-1}}=\frac{\lambda p^{1}}{\lambda P}
$$

Then: $\frac{\alpha}{1-\alpha} \frac{M_{i} / P}{C_{i}}=1$, or $\alpha \frac{M_{i}}{P}=(1-\alpha) C_{i}$

From this expression substitute M_{i} in the budget constraint:

$$
\begin{array}{r}
P C_{i}+M_{i}=P_{i} Y_{i}+\bar{M}_{i} \\
P C_{i}+\frac{(1-\alpha)}{\alpha} P C_{i}=P_{i} Y_{i}+\bar{M}_{i} \\
\frac{1}{\alpha} P C_{i}=P_{i} Y_{i}+\bar{M}_{i} \\
P C_{i}=\alpha\left(P_{i} Y_{i}+\bar{M}_{i}\right)
\end{array}
$$

Similarly, plug $P C_{i}$ in the budget constraint:

$$
\begin{array}{r}
\alpha\left(P_{i} Y_{i}+\bar{M}_{i}\right)+M_{i}=P_{i} Y_{i}+\bar{M}_{i} \\
M_{i}=(1-\alpha)\left(P_{i} Y_{i}+\bar{M}_{i}\right)
\end{array}
$$

Derivation of optimal pricing rule (step 3)

Replacing Y_{i} in the optimization problem:
$\begin{aligned} & \text { Pricing } \\ & \text { Lecision } \\ & \text { atotal }_{P_{i}} \operatorname{Pax}_{i}\end{aligned} \frac{P_{i}}{P} \underbrace{\frac{\alpha}{1-\alpha} \frac{M}{P}\left(\frac{P_{i}}{P}\right)^{-\sigma}}_{Y_{i}}-(\underbrace{\frac{\alpha}{1-\alpha} \frac{M}{P}\left(\frac{P_{i}}{P}\right)^{-\sigma}}_{Y_{i}})^{\beta} \frac{1}{\beta}+\frac{\bar{M}_{i}}{P}$ (S.t. Optimal demand

Rearrange:

$$
\max _{P_{i}} \frac{\alpha}{1-\alpha} \frac{M}{P}\left(\frac{P_{i}}{P}\right)^{1-\sigma}-\left(\frac{\alpha}{1-\alpha} \frac{M}{P}\left(\frac{P_{i}}{P}\right)^{-\sigma}\right)^{\beta} \frac{1}{\beta}+\frac{\bar{M}_{i}}{P}
$$

FOC:
$\left[P_{i}\right]: \quad \frac{\alpha}{1-\alpha}(1-\sigma)\left(\frac{P_{i}}{P}\right)^{-\sigma} \frac{1}{P} \frac{M}{P}-\beta\left(\frac{\alpha}{1-\alpha} \frac{M}{P}\left(\frac{P_{i}}{P}\right)^{-\sigma}\right)^{\beta-1} \frac{1}{\beta} \frac{\alpha}{1-\alpha} \frac{M}{P}(-\sigma)\left(\frac{P_{i}}{P}\right)^{-\sigma-1} \frac{1}{P}=0$
Simplify and put back $Y_{i}: \quad(1-\sigma) Y_{i} y+\sigma Y_{i}^{\beta-1} Y_{i}\left(\frac{P_{P}}{P}\right)^{-1}$ y $=0$ Then:

$$
\frac{P_{i}}{P}=\frac{\sigma}{1-\sigma} Y_{i}^{\beta-1}
$$

